Predicted paper	r 2019 – Paper	· 2F mark scheme -	- Spring 2019
-----------------	----------------	--------------------	---------------

8	8		3	M1 for 17, 20 $.or + 3 or 3n + 2$ M1 for method to show that 34 is not in the sequence eg continue sequence to at least 32		
				eg attempt to solve $3n + 2 = 34$		
				C1 (dep on M2) for statement with conclusion		
				eg No with 32, 35 shown		
				eg $n = 32 \div 3$ which is not a whole number		
2		145	2	M1 for 319 ÷ 2.2 A1 cao		
3.		15 <i>ab</i>		B1 cao		
4.		142	2	M1 for 720 – (110 + 92 + 158 + 85 + 133) or 720 – 578		
				A1 for 142 cao		
5		$\frac{1}{7}$	1	B1 cao		
6.		96	4	M1 for a method to find 36% of 400 (= 144)		
				M1 for a method to find $\frac{2}{5}$ of 400 (= 160)		
				M1 (dep on M2) for 400 – "144" – "160"		
				A1 cao		

7.		e.g. 10, 12,	3	M1 for at least 2 factors of 60 clearly
		5, 2		identified
		-,-		
				M1 for $20 < \text{sum of '4 distinct natural}$
				numbers' < 35
				A1 cao
8.		57°	4	M1 for a method to find angle BCD,
				e.g. 180 – 75 (= 105)
				M1 for a complete method to find x
				A1 for $x = 57$ with supporting working
				C1 (dep on M1) for "sum of the angles
				in a quadrilateral is 360(°)" or
				equivalent quadrilateral theory.
				[Condone omission of other reasons]
0			2	B2 conversion graph (line) drawn
9.	(a)		L	
				between 4.4 pounds and 15.4 pounds
				(B1 for plotting at least 2 points from
				the table)
	(b)	4.4-4.6	1	B1 for $4.4 - 4.6$ or ft graph (dep on
				single straight line)
	(c)	14.2 -	1	B1 for 14.2 – 14.4 or ft graph (dep on
		14.4		single straight line)
				-

14.	9.39 × 10	£11.61	5	M1 for a correct method to find the
				most expensive way to buy the 10
	$24.30 \times 3 + 9.39$			cartridges (= 93.90)
	93.90 - 82.29			M1 for a correct method to find the
				least expensive way to buy the 10
				cartridges (= 82.29)
				M1 (dep on M1 scored) for a correct
				method to find the difference between
				their least and their most expensive
				way, provided that both totals are for
				the cost of exactly 10 cartridges
				A1 for 11.61
				B1 (indep) for correct units

15	(a)	4.3333(3) + 0.37894(7) or $\frac{13}{3} + \frac{36}{95}$		2	M1	Evaluate either fraction correctly as a decimal to at least 5SF(rounded or truncated) or as a simplified fraction or an answer of 4.71(2)
			4.7122(80702)		A1	Correct to at least 5SF (rounded or truncated).
	(b)		4.71	1	B1	ft if at least 4SF given in (a) (not 4.71)

16	a		0	1	B1	
	b	$\begin{array}{c} 0.5 \times 19 + 1.5 \times 12 + 2.5 \times \\ 5 + 3.5 \times 2 + 4.5 \times 2 \ (=56) \\ \textbf{or} \\ 9.5 + 18 + 12.5 + 7 + 9 \\ (=56) \end{array}$	1.4	4	M2	for at least 4 correct products added (need not be evaluated) If not M2 then award M1 for consistent use of value within interval (including end points) for at least 4 products which must be added OR correct mid-points used for at least 4 products and not added
	-	"56" ÷ 40			M1	dep on at least M1 Allow division by their $\sum f$ provided addition or total under column seen
					A1	for 1.4 or $1\frac{2}{5}$
17	(a)	25 - 4 × - 3 or 25 12 or 25 + 12		2	M1	Correct substitution
			37		A1	
	(b)	$2x^2 + x$		3	M1	
		(+)3x - 6			M1	indep
			$2x^2 + 4x + 1$		A1	Cao
18		$\frac{\frac{3450}{2+6+7}}{\frac{2}{2+6+7}} (=230) \text{ or}$ $\frac{2}{2+6+7} \times 3450 (=460)$ or $\frac{7}{2+6+7} \times 3450 (=1610)$ or $\frac{7-2}{2+6+7} \left(=\frac{1}{3}\right)$		3	M1	
		$(7-2) \times "230"$ or $7 \times$ $"230" - 2 \times "230"$ or "1610" - "460" or " $\frac{1}{3}$ "×3450			M1	dep
			1150	<u> </u>	A1	
19		$\frac{8}{100}$ × 20000 (=1600)		4	M1	

$20000 + \frac{8}{100} \times 20000$ (=21600) or (20 000 - 19200) + $\frac{8}{100} \times 20000$ (=2400)		M1	Award M2 for 20000×1.08 or 21600
$\frac{"21600"-19200}{19200} (\times 100) \text{ or }$		M1	or for 1.125 or $\frac{9}{8}$ or 112.5%
$\frac{"2400"}{19200}$ (×100)			
or "21600" ÷ 19200 (×100) oe			
	12.5	A1	oe

Part	Working or answer an examiner might expect to see	Mark	Notes
20	4 left-handed	C1	This mark is given for correctly placing at least one piece of the data given in the question (22 or 16)
	45 male 18 right-handed 7 left-handed 23 female 16 right-handed	C1	This mark is given for finding at least one unknown piece of data (4, 18, 7 or 23)
		C1	This mark is given for a completely correct probability tree

Part	Working or answer an examiner might expect to see	Mark	Notes
21	$0.5 imes \pi imes 50 = 78.55$	P1	This mark is given for a process to find the circumference of the semicircle
	78.55 + 50 = 128.55	P1	This mark is given for a complete process to find the perimeter of the field
	$128.55 \times 29.86 = 3838.50$	P1	This mark is given for finding the cost of the fencing
	$3838.50 + (180 \times 3)$	P1	This mark is given for a complete method to find the total cost of the job
	4378.50	A1	This mark is given for the correct answer only

Part	Working or answer an examiner might expect to see	Mark	Notes
22	$\frac{27}{60} \times 360 = 162^{\circ},$	B1	This mark is given for finding the angle for at least one sector
	$\frac{12}{60} \times 360 = 72^{\circ},$		
	$\frac{6}{60} \times 360 = 36^{\circ}$		
		B1	This mark is given for drawing at least one sector accurately
	Bicycle Bus Car Walk	B1	This mark is given for an accurately drawn pie chart
		B1	This mark is given for all sectors accurately labelled

23	Eg $\frac{1.5}{100} \times 20000$ oe or 300	OR 20 000 $\times 1.015^{3}$		3	M1	for eg $\frac{1.5}{100} \times 20000$ oe or 300	OR M2 for 20000×1.015^3 or $20000 \times$ 1.015^4 or 21 227.27
	$\frac{1.5}{100} \times (20\ 000+'300') = 304.5$ $\frac{1.5}{100} \times (20\ 000+'300'+'304.5')$ $= 20913.5675$	-			M1	for completing method	(M1 for 20 000 × 1.015 ² or 20 604.5)
						Accept $1 + 0.0$ equivalent to throughout	
							$20\ 000 \times 1.045$
			20 914		A1	Answers in ra 914	nge 20 913– 20
24	Interior angle of pentagon $(180 \times 3) \div 5 (= 108)$ oe			4	M1	or exterior ang $\frac{360}{5}$ (= 72)	gle of pentagon =
	Interior angle of octagon $(180 \times 6) \div 8 \ (= 135) \ oe$				M1	or exterior ang $\frac{360}{8} (= 45)$	gle of octagon =
	(<i>CBF</i> =) 360 – ("108" + "135")) (= 117)	31.5		M1 A1	(<i>CBF</i> =) "72"	+ "45" (= 117)

25	(a)		k ¹⁵	1	B1	
	(b)		$5y^4$	2	B2	B1 for fully simplifying terms in x or terms in y
	(c)	$h-f=3e$ or $\frac{h}{3}=e+\frac{f}{3}$ or $\frac{h-f}{3}$		2	M1	
		$\frac{h-f}{3}$				
			$e = \frac{h - f}{3}$		A1	oe, accept $e = \frac{f - h}{-3}$