Number – Place value and Number lines

Number – Rounding

EZY MATHS

© EzyEducation ltd 2017

Number – Addition and Subtraction

Addition and subtraction of positive and negative numbers

Filling the bath analogy

© EzyEducation ltd 2017

Add cold water

Number – Multiplication and Division

Number – BIDMAS

EZY MATHS

Brackets Indices Division Multiplication Addition **Subtraction** Follow the order of BIDMAS to calculate If you can do nothing for a given step, move on to the next

Example 1 $6 + 3 \times 4$ **Multiplication first** $= 6 + 3 \times 4$ Addition second 6 + 1218 Example 3 $(9 - 3 \times 2)^2 \div (10 \div 5)$ $(9 - 3 \times 2)^2 \div (10 \div 5)$ (3)(2)Follow the order of operations 9÷ within brackets 4. **b**EzyEducation Itd 2017

Example 2

 $3 + 8 \times (4 + 6) \div 5 - 2$ Brackets first $= 3 + 8 \times (4 + 6) \div 5 - 2$ Multiplication and Division second

$$= 3 + 8 \times 10 \div 5 - 2$$

Addition and Subtraction last

$$3 + 16 - 2$$

= <u>17</u>

Number – Prime Numbers, Factors, Multiples

EZY MATHS

important

Number – Prime Factor Decomposition, HCF, LCM

Number – Powers and Roots

Algebra – Notation and Collecting like terms

Algebraic notation

Algebra is the language we use to communicate mathematical information

Letters used to represent values are known as variables.

Notation creates shortcuts

$a \times b$ becomes ab	coefficient
x + x + x + x becomes	4x
$y \times y$ becomes y^2	

$$6xy - 5\frac{a}{b} + 21x^4$$

Expression

Terms

Same rules of BIDMAS applies to Algebra

Collecting like terms

EZY MATHS

Collecting like terms enables us to simplify expressions making them easier to use

Terms that contain the exact same variable can be classed as 'like' terms and be simplified

Watch out for the sign before each term

5x + 6y - 2x - 5y = 3x + y

$$5xy + 3x - 2xy + 4y = 3xy + 3x + 4y$$

$$2x^2 + 3x + 5x^2 - 5x = 7x^2 - 2x$$

Identify like terms

Use coefficients to collect like terms

First step in many problems involving Algebra

© EzyEducation ltd 2017

Algebra – Formulae

EZY MATHS

Introduction

Explains how to calculate the value of a variable

"The price of a taxi fare in Manchester depends on the distance driven. Each fare is charged a flat fee of £2 and then £3 for each mile driven."

C = 2 + 3M

For any given trip, can easily work out the cost of a taxi

Area of circle formula

$$\underline{A} = \pi r^2$$

Subject

Substitution

Replace letters in the formula with numbers you are given

"The perimeter of a square is 4 times the length of its sides" D = 41

P = 4l

What is perimeter of a square with side length 5cm?

$$l=5 \qquad P=4(5)$$

P = 20cm

Identify the formula and the values to substitute in.

Substitute values in using brackets

Carry out calculation remembering BIDMAS

Changing the subject

Algebra – Laws of indices

Basic Laws of Indices		Advanced Laws of Indices			
	Special	indices to consider	Negative Indices		
$x^1 = x$	Any	thing to the power $1 = $ itself	$n \rightarrow 1/$	Find Reciprocal	
$x^0 = 1$	Ar	nything to the power $0 = 1$	$\chi \sim /\chi^n$	Apply Positive Power Apply top and bottom	
$1^x = 1$ (1 to	the power of anything $= 1$	$z^{-3} = \left(\frac{1}{z}\right)^3 = \frac{1}{z^3}$	$6^{-2} = \left(\frac{1}{6}\right)^2 = \frac{1}{36}$	
These laws can be applied if the bases are the same			Fractional Indices		
$x^a \times x^b$	$=x^{a+b}$	When multiplying powers with	$\frac{m}{m} = (n/m)m$	Root by denominator first	
$z^3 \times z^7 = z^{10}$		the same base – Add the powers	$x n = (\sqrt{x})^{n}$	Then power of numerator	
a h	a b		$x^{\frac{1}{2}} = \sqrt{x} \qquad x^{\frac{1}{3}} = \sqrt[3]{x}$	$x^{\frac{1}{4}} = \sqrt[4]{x} \qquad x^{\frac{2}{3}} = (\sqrt[3]{x})^2$	
$x^a \div x^b = x^{a-b}$ When dividing powers with the		$64^{\frac{2}{3}} = (\sqrt[3]{64})^2 = (4)^2 = 16$			
$s^2 \div s^5 = s^{-3}$ same base – Subtract the powers		Negative F	ractional Indices		
$(x^a)^b =$	$x^{a \times b}$	When raising the power (brackets)	a 1	Negative Fractional Powers:	
$(e^4)^3 = e^{12}$		– Multiply the powers	$x^{\overline{b}} = \frac{1}{\left(\frac{b}{\sqrt{x}}\right)^{a}}$	$9^{-\frac{3}{2}} = \frac{1}{3} = \frac{1}{(27)^3} = \frac{1}{(2)^3}$	
		© EzyEducat	ion ltd 2017	$9\overline{2}$ $(\sqrt[5]{9})^{-}$ $(3)^{3}$	

Algebra – Expanding brackets

Multiply terms outside by all terms inside

10(x + y + 4) = 10x + 10y + 40

$$3x(6x-2) = 18x^2 - 6x$$

Expanding brackets often the first step in simplifying algebra

$$2(x + 3y) - 7(2x - y) = 2x + 6y - 14x + 7y$$

Include sign in
multiplication = $-12x + 13y$

© EzyEducation ltd 2017

Algebra – Factorising

The process where an expression has common factors removed and brackets introduced **Highest common factor method** Ladder method Look at whole expression, identify HCF and divide out Divide out simple common factors repeatedly 3 12x - 6y + 3z12x - 6y + 3z12x - 6y + 3zHCF = 34x - 2y + 1z3(4x - 2y + z)3(4x - 2y + z)ax + aby + 4azax + aby + 4azHCF = aa ax + aby + 4aza(x + by + 4z)a(x + by + 4z)x + by + 4z $18x^2y + 6xy - 24xy^2z$ $2 18x^2y + 6xy - 24xy^2z$ HCF = 6xy $3 9x^2y + 3xy - 12xy^2z$ 6xy(3x + 1 - 4yz) $x 3x^2y + 1xy - 4xy^2z$ $y | 3xy + 1y - 4y^2z |$ Look at each term separately, divide $\frac{6xy(3x+1-4yz)}{3x+1-4yz} \quad 3x+1-4yz$ numbers first then the algebraic terms

Algebra – Linear Equations

Algebra – Quadratics

Algebra – Sequences

EZY MATHS

Arithmetic progressions

Finding the n^{th} term rule

	(+3)(+3)(+3)					
Se	equence	5	8	11	13	
Ti	mes table	3	6	9	12	
E>	ktra bit	+2	+2	+2	+2	

3*n* + 2

Find the common difference (this will be your *n* coefficient)

Write times table underneath sequence (of your *n* coefficient)

Sequence minus times table (this is your extra bit)

General formula

 $\frac{n^{th}}{term} = \frac{1^{st}}{term} + \frac{common}{difference} \times (n-1)$

© EzyEducation ltd 2017

Has the form $an^2 + bn + c$. A second layer difference

 $1n^2 + bn + c$

Find linear sequence

Sequence	5	9	15	23
$1n^{2}$	1	4	9	16
Subtract	4	5	6	7

 n^{th} term rule of this = n + 3

 $1n^2 + 1n + 3$

Statistics – Mean, Median, Mode and Range

Mean	Median	Mode	Range
$Mean = \frac{Total \ of \ all \ values}{number \ of \ values}$	Median = Middle value (Numbers written in order)	Mode = Most common value/item	Range = Largest - Smallest
3, 3, 4, 5, 5, 8, 9, 15	3, 3, 4, 5, 5, 8, 9, 15	3, 3, 4, 5, 5, 8, 9, 15	3, 3, 4, 5, 5, 8, 9, 15
Mean $=\frac{52}{8}=6.5$	Median = 5	Mode = $3 and 5$	Range = $15 - 3 = 12$
Collect it all together and share it out evenly	Finds the middle value	Average usually used for qualitative data	Reveals how close/far apart the values are
Using the mean to find the total amount	Use of formula to find location of median	Occurrence of no mode	Interpreting measures of spread
Mean × Number of values	$Location = \frac{n+1}{2}$	If every value appears equally, there is no mode	The Smaller the range, the closer and more 'consistent'
Ezytown FC have scored an average of 3.8 goals per game in their last 15 matches. How many goals have they scored? $3.8 \times 15 = 57$ goals	The median of 45 values would be the 23 rd number when written in order $\frac{45 + 1}{2} = 23$	1, 1, 3, 3, 7, 7 Each value appears twice so there is no mode	the values are. The Larger the range, the more varied and more 'inconsistent' the values are.

Statistics – Averages from a frequency table

Statistics – Averages from a grouped frequency table EZY MATHS

Statistics – Representing data

Statistics – Cumulative Frequency tables and graphs

Cumulative Frequency tables

Running total (add up as we go down)

Time	Frequency	Cumulative Frequency	
$45 \le x < 48$	3	1d 3	
$48 \le x < 50$	8 E q	uals 11	
$50 \le x < 52$	16	dd 27	
$52 \le x < 55$	12 🗲	uals 39	
$55 \le x < 60$	11	dd 50	
$60 \le x < 70$	2 Eq	uals 52	

The difference between cumulative frequency values will tell you the frequency

May be asked to calculate percentages $\% = \frac{Amount}{Total} \times 100$

Statistics – Quartiles and box plots

Maximum

Value

<u>4</u>0

Exam Marks

Statistics – Histograms

Age

on ltd 2017

Calculating Frequency from Histograms

$$Frequency = F.D. \times Class Width$$

Age	F.D.	Class Width	Frequency
$0 < x \le 10$	3 >	〈 10	30
$10 < x \le 25$	4 >	〈 15	60
$25 < x \le 30$	5 🕽	K 5	25
$30 < x \le 40$	3 💙	〈 10	30
$40 < x \le 50$	2.5 >	〈 10	25

Statistics – Scatter Graphs

Number – Fractions – Simplifying, Improper, Mixed

Simplifying **Improper Fractions Mixed Number** The numerator is larger than the The combination of a WHOLE Divide both the numerator and number and a Fraction denominator by the same value denominator Turning into an improper Repeat the process until the fraction Turning into a mixed number is in its simplest form fraction $7\frac{3}{8}$ **13** Divide numerator by denominator Even = $\div 2$ Multiply whole number by NUMERATOR χ⊏ to get whole number denominator 5 $Odd = \div 3, 5, 7 \dots$ DENOMINATOR **2**^{r3} 56 + 3Add on the numerator Remainder forms new numerator $32 \xrightarrow{\div 2} 16 \xrightarrow{\div 2} 8 \xrightarrow{\div 2} 4 \xrightarrow{\div 2} 2$ 59 Denominator remains the same $80 \xrightarrow{\div 2} 40 \xrightarrow{\div 2} 20 \xrightarrow{\div 2} 10 \xrightarrow{\div 2} 5$ $2\frac{3}{5}$ Denominator remains the same 8 These are all equivalent fractions. Don't forget to simplify your answers where necessary! $126 \div 2, 63 \div 3, 21 \div 3, 7$ Useful skills for adding/subtracting/multiplying and dividing $72 \xrightarrow{\div 2} 36 \xrightarrow{\div 3} 12 \xrightarrow{\div 3} 4$ fractions

Number – Fractions – Addition and Subtraction

Adding or Subtracting fractions requires a common denominator

When denominators are the same, simply add the numerators

Adding/Subtracting Mixed Numbers

EZY MATHS

Method 1 – Deal with whole numbers and fractions separately

$$3\frac{1}{2} + 4\frac{1}{4} \longrightarrow 3+4 + \frac{1}{2} + \frac{1}{4} \longrightarrow = 7\frac{3}{4}$$

 $-\begin{pmatrix}1\\6\\6\end{pmatrix}$ When denominators are different, multiply the fractions

$$5\frac{2}{3}-2\frac{1}{9}$$
 \longrightarrow $5-2$ $+\frac{2}{3}-\frac{1}{9}$ \implies $=3\frac{5}{9}$

Method 2 – Convert to improper fractions first then calculate

$$6\frac{1}{5} - 4\frac{3}{4} \quad \rightleftharpoons \frac{31}{5} - \frac{19}{4} \quad \rightleftharpoons \frac{124}{20} - \frac{95}{20} \quad \rightleftharpoons \frac{29}{20} = 1\frac{9}{20}$$

 $3\frac{1}{5} + 5\frac{9}{10} \rightarrow \frac{16}{5} + \frac{59}{10} \rightarrow \frac{32}{10} + \frac{59}{10} \rightarrow \frac{91}{10} = 9\frac{1}{10}$

Remember to simplify your answers

18

18

© EzyEducation ltd 2017

Number – Fractions – Multiplying and Dividing

EZY MATHS

© EzyEducation ltd 2017

Number – Fractions – Converting Decimal to Fraction EZY MATHS

acation ltd 2017

Decimal -> Fraction Conversions you should know

Decimal	Fraction	
0.5	$^{1}/_{2}$	$0.3 \rightarrow 1/_{10} + 1/_{10} + 1/_{10} \rightarrow 3/_{10}$
0.3	1/3	$0.1 \ 1/_{10}$
0.25	1/4	
0.2	¹ / ₅	
0.125	1/8	
0.1	$\frac{1}{10}$	

Know your place values

Place Decimal part over 10/100/1000 etc.

Simplify the Fraction

Put back whole numbers if you had them

Using place value Hundredths x/100 Ten Thousandths x/1000 1234

Tenths $x/_{10}$ Thousandths $x/_{1000}$

Write 0.32 as a fraction in its simplest

form

(^x/100 ' Hundredths $\Rightarrow \frac{32}{100} \div \frac{2}{50} \times \frac{16}{2} \times \frac{8}{25}$ 0.32

Number – Fractions – Converting Fraction to Decimal EZY MATHS

Division method

Divide the numerator by the denominator. Using Bus shelter division

$$\frac{1}{7} \longrightarrow 7 \frac{\cancel{1.428}}{\cancel{1.0000}} \longrightarrow 0.143$$

Mixed Numbers and Improper Fractions

Process does not change.

Try and work with mixed numbers where possible.

$$\frac{86}{25} \Rightarrow 3 \frac{11}{25} \times 4 \frac{44}{100} = 0.44$$

3.44

Equivalent Fraction method

Multiply or Divide the fractions so that they can be converted to decimals easily

$$\frac{13}{20} \xrightarrow{\times 5} \frac{65}{100} = 0.65$$

3

Decimal -> Fraction Conversions you should know

DecimalFraction
$$0.5$$
 $1/2$ 0.3 $1/3$ 0.25 $1/4$ 0.2 $1/5$ 0.125 $1/8$ 0.1 $1/8$

$$4 \rightarrow 0.25 + 0.25 + 0.25 \rightarrow 0.75$$

0.25 $\frac{1}{4}$

Number – Fractions – Converting recurring decimals EZY MATHS

RPR – Quantities as fractions/percentages of each other

RPR – Percentages and percentage change

RPR – Simple interest and Compound Growth and Decay

RPR – Ratio

RPR – Proportion

As one value increases, the other increases at the same rate

Three Coffees cost £7.50,

How much would five Coffees cost?

Find the value of one coffee then multiply by quantity needed

 $£7.50 \div 3 = £2.50 \ per \ coffee$ $£2.50 \times 5 = £12.50$

Inverse Proportion

As one value increases, the other decreases at the same rate

It takes 3 men 4 days to build a wall. How long would it take 2 men?

Find the time taken by one man then divide by quantity stated

 $3men \times 4 \ days = 12 \ days$

 $12 \ days \div 2 \ men = 6 \ days$

	Direct Proportion		lı
	y is directly proportional to x		y is ir
	$y \propto x$ Constant of proportionality	y	$v \propto \frac{1}{r}$
J	$y = k \times x$ k is the rate of change		X
	Solving direct proportion problems		Solving
	<i>p</i> is directly proportional to <i>t</i> . p = 24, t = 8		p is i
	a) Find p when $t = 7$		ā
	b) Find t when $p = 39$		b
	Compare two values		
	$p = k \times t$ $rightarrow 24 = k \times 8$		
	Work out the value of <i>k</i>		n -
	$24 - k \times 9^{\frac{+8}{24}} 24 - k$		<i>p</i> –
	$24 = \kappa \times 8 \Box \sqrt{\frac{8}{8}} = \kappa \Box \sqrt{3 - \kappa}$		For
	Form equation to solve problems		
	$p = 3 \times t a) p = 3 \times 7 = \underline{21}$		<i>p</i> =
ſ	b) 39 = $3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = $	ſ	b) 6

Inverse Proportion

$$y \propto \frac{1}{x} \rightarrow y = \frac{k}{x}$$

Constant of proportionality k

inverse proportion problems nversely proportional to t. p = 16, t = 2Find *p* when t = 8Find *t* when p = 64Compare two values Work out the value of k $16 = \frac{k}{2} \longrightarrow 32 = k$ $\frac{k}{t}$ m equation to solve problems 32 a) $p = \frac{1}{8} = \frac{4}{8}$

RPR – Graphical representations of Proportion

EZY MATHS

 $y \propto \frac{1}{x}$ \rightarrow $y = \frac{k}{x}$ As one value increases, the other decreases Inverse proportion will always give a <u>Curved</u> graph

Inverse Proportion

Geometry – Quadrilaterals

Know the names of these Quadrilaterals and their properties

Geometry – Triangles

Know the names of these Triangles and their properties

Geometry – Polygons

They are classified by the number of sides they have

Number of sides	Name of shape
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon

Geometry – 3D shapes

Geometry – Angle facts

Geometry – Angles in triangles and polygons

Knowledge of triangles is important Sum of interior Number Number Regular Regular of sides of angles interior angle exterior angle 3 1 180° 60° 120° 2 90° 90° 360° 4 5 3 540° 108° 72° 720° 120° 60° 6 4 7 5 900° 129° 51° 1080° 135° 45° 8 6 $(n-2) \times 180^{\circ}$ (n - 2) $(n-2) \times 180^{\circ}$ $360^{\circ} \div n$ n n

Polygons

The number of triangles in a shape will always be <u>**TWO**</u> less than the number of sides

Geometry – Angles Parallel lines

EZY MATHS

© EzyEducation ltd 2017

Geometry – Pythagoras' Theorem

Geometry – Trigonometry functions

Geometry – SohCahToa

Graphs – Coordinates

A set of values that indicate the position of a point.

They normally occur in pairs in the form (x, y)

Reading the coordinates will lead you to the exact position.

 $(7, -4) \Rightarrow$ Seven units right, Four units down $(-2, 6) \Rightarrow$ Two units left, Six units up $(-5, -2) \Rightarrow$ Five units left, Two units Down

Graphs – Equation of a Straight line

Graphs – Midpoints, Parallel lines and Perpendicular lines

Graphs – Contextual graphs

Graphs – Quadratic and Cubic graphs

Graphs – Reciprocal and Exponential graphs

Graphs – Equation of a circle

Geometry – Perimeter and Area

Perimeter	Rectangular areas	Triangular areas
The total distance <u>AROUND</u> a 2D shape	The total <u>space</u> taken up by a 2D shape	The area of a triangle takes up <u>half</u> the space of the rectangle that is
Adding all the side lengths together	Multiplying two side lengths together	formed around it
$\begin{array}{c c} 100m \\ 35m \\ 35$	Area of rectangle $= l \times w$	Area of triangle $\sum_{k=1}^{k} = \frac{1}{2}(b \times h)$
100m 270m	$12cm \qquad \text{Area} = 6cm \times 12cm$	$A = \frac{1}{2}(7m \times 4m) = \frac{1}{2}(28m^2)$
The process does not change if we have algebraic terms	72cm ²	7m 14m ²
$\gamma \rightarrow \gamma$	With compound shapes, break it down.	Be sure to use perpendicular heights
$\begin{array}{c} x \\ 2x \\ 3x \\ 3x \\ 2x \\ 3x \\ 3$	$5cm \qquad 5cm \qquad 5cm \qquad A = 60cm^2 \\ B = 20cm^2 $	Calculate base × height first
	$\begin{bmatrix} A & B & C & 12 \\ 5cm & 5cm & 140cm^2 \\ \hline & & & \\ & & & & \\ & & & \\ &$	Kemember to <u>maive</u> your answer!

Geometry – Advanced areas

Geometry – Circle Definitions

Geometry – Area and Circumference

Geometry – Volume

Number – Approximation and Error Intervals (Bounds) EZY MATHS

Approximation

Estimates tell us the rough value of a calculation

Rounding off makes it easier to calculate

Geometry – Similarity and Congruence

Geometry – Transformations

Geometry – Congruence criteria for triangles

EZY MATHS

© EzyEducation ltd 2017

Geometry – Constructing bisectors and Loci

© EzyEducation ltd 2017

Algebra – Solving by factorising and the Quadratic formula

The quadratic formula Solving by factorising $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $ax^{2} + bx + c = 0 \implies (x \pm)(x \pm) = 0$ The formula you **need** to Factorise the quadratic – You may need to rearrange first know $x^{2} + 8x + 7 = 0$ \implies (x + 7)(x + 1) = 0Substitute values into the formula to generate two answers for *x* $x = -7 \ or \ -1$ $5x^2 + 8x - 4$ Identify values of *a*, *b* and c Find values for x that will make each bracket = 0 $2x^2 - 2x = 3(1 - x) \implies 2x^2 - 2x = 3 - 3x$ $x = \frac{-(8) \pm \sqrt{(8)^2 - 4(5)(-4)}}{2(5)}$ Expand and rearrange to = 0 $2x^{2} + x - 3 = 0 \implies (2x + 3)(x - 1) = 0$ Substitute and simplify $x = \frac{-8 \pm \sqrt{144}}{10}$ $x = -\frac{3}{2} or + 1$ Carry out two calculations x = 0.4 or -2© EzyEducation Itd 2017

Algebra – Completing the square and solving quadratics

Algebra – Simultaneous equations

EZY MATHS

Simultaneous equations Linear equations (Substitution method) $3y + 10x = 7 \longrightarrow 3y + 10x = 7$ Rearrange to get a Equations involving two or more unknowns that are to have the y - 2x = 1 y = 2x + 1single variable on same values in each equation Substitute y = 2x + 1 into equation 1 its own 4x + 3y = 5 | 2x - 3y = 4 | 3y + 10x = 73(2x+1) + 10x = 7Substitute 3x + 2y = 4 | 5x + 2y = 1 | y = 2x + 1equations to find 16x + 3 = 7first variable x = 0.25Linear equations (Elimination method) Substitute x = 0.25 into equation 2 Substitute to find $y = 2(0.25) + 1 \implies y = 1.5$ second variable Multiply equations to get Substitute to find Add/subtract matching coefficients second variable equations Quadratic equations (Substitution method) $4x + 3y = 5 \times 3$ 12x + 9y = 15y = x + 6 $x + 6 = x^2 - 2x + 2$ $3x + 2y = 4 \times 4$ -12x + 8y = 16 $y = x^2 - 2x + 2$ $0 = x^2 - 3x - 4$ y = -1Substitute equation into quadratic and rearrange to = 0Substitute y = -1 into equation 2 (x+1)(x-4) = 0 x = -1 or + 4 $3x + 2(-1) = 4 \implies 3x - 2 = 4 \implies x = 2$ Factorise and find two solutions for variable y = (-1) + 6Matching coefficients: y = (4) + 6Same signs (Subtract the equations) $\nu = 5$ y = 10Opposite signs (Add the equations) Substitute each answer to find other pair of solutions

Algebra – Inequalities

EZY MATHS

Two variable inequalities

Inequalities with 2-variables need to be represented on a graph

Shade the region satisfied by the inequalities: y > -x, $y \le 4$, x < 3

Draw the line graph for each inequality

 \leq - Solid line < - Dashed line

Statistics – Probability

Introduction	Calculating probability	Types of events
The likelihood of an event happening	$P(\text{Event}) = \frac{number \ of \ successful \ outcomes}{P(\text{Event})}$	Mutually exclusive
1/4 1/2 3/4 0% 25% 50% 75% 100% 0 0.25 0.5 0.75 1 Impossible Even Chance Certain	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	Events that cannot happen at the same time Rolling a die $\rightarrow P(1 \text{ and } 6)$ All probabilities from the event will <u>sum</u> to make <u>1</u> Independent events
Counting outcomes Working out how many combinations there are	The 'OR' rule (mutually exclusive) P(a or b) = P(a) + P(b) 2 1 3	Events where the outcome of one <u>doesn't</u> affect the outcomes of the others Picking a counter out of a bag, replacing it and repeating.
Rolling a die and flipping a coin	$P(2 \text{ or } 4) = \frac{1}{8} + \frac{1}{8} \boxed{-8} \frac{\text{Add}}{\text{probability}}$	Dependent events
Heads H, 1 H, 2 H, 3 H, 4 H, 5 H, 6 Tails T, 1 T, 2 T, 3 T, 4 T, 5 T, 6	The 'AND' rule (independent) $P(a \text{ and } b) = P(a) \times P(b)$	Events where the outcome of one <u>does</u> affect the outcomes of the others Picking a counter out of a bag, not replacing it and repeating.
This is a sample space diagram There are 12 possible outcomes from this event	Flip a coin twice $P(2 tails) = \frac{1}{2} \times \frac{1}{2} \longrightarrow \frac{1}{4}$ $P(2 tails) = \frac{1}{2} \times \frac{1}{2} \longrightarrow \frac{1}{4}$ $P(2 tails) = \frac{1}{2} \times \frac{1}{2} \longrightarrow \frac{1}{4}$	Calculating expected outcomes $P(event) \times number of trials$

Statistics – Venn Diagrams and Probability trees

Venn diagrams **Probability trees** Probability trees are really useful to calculate the probabilities of A set is a collection of things, called elements combined events happening The set of prime $A = \{2, 3, 5, 7, 11\}$ Multiply along branches 2nd Bag 1st Bag numbers less than 12 $P(Red and Red) = \frac{4}{15}$ Intersections (\cap) and Unions (\cup) $^{2}/_{5}$ 1/3 $A = \{2, 3, 5, 7, 11\} \qquad B = \{1, 3, 5, 7, 9\}$ Blue $P(1 \text{ Red and } 1 \text{ Blue}) = \frac{2}{15} + \frac{6}{15} = \frac{8}{15}$ $^{3}/_{5}$ $A \cap B = \{3, 5, 7\}$ – Intersection of A and B Blue -The crossover between sets $^{1}/_{3}$ Add together all combinations Blue $A \cup B = \{1, 2, 3, 5, 7, 9, 11\}$ – Union of A and B **Dependent events** All values in the sets Probability trees where the outcome of one events affects the outcome $A' \cap B = \{1, 9\}$ of the next event e.g. no replacement, weather etc. Values in <u>B</u> but not in <u>A</u> $P(Rain and late) = (0.3 \times 0.4) = 0.12$ Late $P(G) = \frac{85}{200}$ ξ Н Rain On $P(On \ time) = (0.18 + 0.56) = 0.74$ 0.6Time $P(H \cap G) = \frac{25}{200}$ 50 25 60 Late When dealing with **no replacement**, 0.7 remember to reduce the denominator On by one for the second event $P(H \cap G')$ Time

Number – Standard Form

EZY MATHS

Multiply/Divide Standard form

Separate the numbers and powers of 10. Multiply/Divide numbers, Apply laws of indices to power of 10s Give answer in Standard form

 $(4.6 \times 10^4) \times (3 \times 10^3)$ $4.6 \times 3 \times 10^4 \times 10^3$ $13.8 \times 10^7 \times$ 1.38×10^{8}

 $(1.56 \times 10^{-4}) \div (7.5 \times 10^{-7})$ $1.56 \div 7.5 \times 10^{-4} \div 10^{-7}$ \times 10³ **×** 0.208 2.08×10^{2}

© EzyEducation ltd 2017

Algebra – Algebraic fractions

Multiplication and Division				
Multiply across the numerators and denominators				
Cross cancel terms where possible	Simplify each fraction	Factorise expressions		
$\frac{2}{x} \times \frac{x^2}{y}$	$\Rightarrow \frac{2}{1^{\cancel{x}}} \times \frac{\cancel{x}^2 x}{y} \Rightarrow$	$\frac{2x}{y}$		
$\frac{6a+6b}{2} \times \frac{1}{a+b} \square$	$\frac{Factorise}{2} \frac{6(a+b)}{2}$	$\frac{b}{a+b} = 3$		
To <u>divide</u> , multiply by reciprocal of 2 nd fraction				
$\frac{4yz}{x} \div \frac{yz^2}{10}$, change, flip $\frac{4y}{x}$	$\frac{yz}{z} \times \frac{10}{yz^2}$		
$\frac{4xz}{x}$ ×	$\frac{10}{yz^2} \Rightarrow \frac{40}{xz}$			

Algebra – Functions

RPR – Rates of change

Graphs – Translations and Reflections

Graphs – Using graphs to find solutions

Plot each equation separately

Identify and read off the points of intersections for your solutions

Use graph to read off specific values for x and y

Graphs – Estimating gradients, Area under a curve

Area under a curve

EZY MATHS

Estimate the distance travelled for the first ten seconds

Estimating Gradients

10

10 x

seconds(s)

seconds(s)

10 V

metres (m)

Calculate average gradient from beginning to end. These are not very accurate and do not show the full picture

Break the graph down into smaller pieces to see what is happening Gradient $A = \frac{1}{3} \longrightarrow 0.3 m/s$

Gradient
$$B = \frac{5}{3} \longrightarrow 1.7 \text{ m/s}$$

Gradient
$$C = \frac{3}{5} \longrightarrow 0.6m/s$$

Find out what is happening at a
particular point - TangentsGradient $A = \frac{1.5}{2}$ Gradient $A = \frac{1.5}{2}$ Gradient $C = \frac{1.5}{2}$ 0.75m/s at 3 secondsO.75m/s at 3 secondsGradient $C = \frac{1.5}{2}$ Gradient $C = \frac{1.5}{2}$ Gradient $C = \frac{1.5}{2}$ Gradient $C = \frac{1.5}{2}$ Gradient $D = \frac{1}{3}$ 1.75m/s at 5 seconds0.3m/s at 10 seconds

Estimate because tangents vary

Geometry – Sine and Cosine rules

Using Trigonometry to calculate missing angles and side lengths in non right angled triangles

Graphs – Trigonometric Graphs

Statistics – Types of data and Sampling

Types of data		Sampling
Quantitative	Qualitative	We collect and analyse data to give us information about a population
Data that is numeric	Data that is descriptive	Census
Discrete	Categorical data	Data is collected from Can take a very long time to collect the
Data that can be	Data which can be	the WHOLE population information
certain values	categories	Sample
People on a bus	Hair colour	Data is collected from Quicker to collect the data and the data can be
Shoe Size	Favourite food	PART of the population used to describe the whole population
Dress size	Sport	Random Stratified
Continuous	Grouped Data	Vermeente is non denstrate et al. Drenertienete numbere frem each
Data that can be	Data which is	Your sample is randomly selected proportionate numbers from each
measured to various	organised into classes	Each member assigned a number
levels of accuracy	Drimary	Numbers randomly generated Amount in group
Height of a tree		Those numbers used in sample Total number
Speed of a car	Data collected by you	Bias
Mass of a person	Secondary	Some situations can cause When and where the cample is taken?
		Some situations can cause when and where the sample is taken?
	Data gathered from	bias and make the sample Is the sample large enough?

Probability and Statistics – Frequency and Two-Way Tables EZY MATHS

Number of girls in Year 12 is 70. © EzyEducation Itd 2017

Use to calculate missing values

Geometry – Circle Theorems

Number – Surds and Rationalising the denominator

Rationalising the denominator

Rationalising the denominator involves removing all of the roots from the bottom of a fraction.

$$\frac{6}{\sqrt{3}} \Longrightarrow \frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

Multiply top and bottom by $rac{6\sqrt{3}}{\sqrt{3}}$ irrational root

EZY MATHS

A more complex denominator

$$\frac{5}{3 + \sqrt{2}} \implies \frac{5}{3 + \sqrt{2}} \times \frac{3 - \sqrt{2}}{3 - \sqrt{2}}$$
$$= \frac{5(3 - \sqrt{2})}{(3 + \sqrt{2})(3 - \sqrt{2})}$$
$$= \frac{15 - 5\sqrt{2}}{9 - 3\sqrt{2} + 3\sqrt{2} - 2}$$

Multiply top and bottom by Conjugate (opposite root)

Expand and simplify

$$=\frac{15-5\sqrt{2}}{7}$$

© EzyEducation ltd 2017

Geometry – Vectors

Number – Units – Mass, Length, Area and Volume

EZY MATHS

Area and Volume

two lengths

 $100mm^2 = 1cm^2$

 $10,000cm^2 = 1m^2$

 $1,000,000m^2 = 1km^2$

multiplying three lengths

 $1000mm^3 = 1cm^3$

 $1,000,000cm^3 = 1m^3$

© EzyEducation ltd 2017

Number – Units – Time and Money

Geometry – Bearings

