Number - Place value and Number lines

The position of each digit is important as it carries a specific value.

> Each place to the left
is $10 \times$ larger
Number lines can be used to count up or down

Markings are the same distance apart each time

Ten Thousandths
An increase means moving to the right, a decrease means moving to the left.

Useful for ordering numbers of different forms

Number - Rounding

Place Value

To the nearest ten
14670
To the nearest hundred
14700
To the nearest thousand
15000

Decimal Places
Count Right from the Decimal Point

1234
 12.5298

To 1 decimal place
12.5

To 2 decimal places
12.53

To 3 decimal places
12.530

Significant Figures
Count Right from first non-zero Digit
$\begin{array}{lllll}1 & 2 & 3 & 4 & 6\end{array}$ 325484

To 1 significant figure

300000

To 2 significant figures

330000

To 3 significant figures
325000

Number - Addition and Subtraction

Number - Multiplication and Division

Column method

Box/Grid method

Chinese

Multiplication

Signs the same = Positive answer

Signs different = Negative answer

Number - BIDMAS

Number - Prime Numbers, Factors, Multiples

Prime numbers

A Number is Prime if it

 has exactly 2 factors: 1 and itself
No other number can divide into it exactly

```
1 is not a
    prime
    number
```

```
2 is the only
    even prime
    number
```

Prime numbers up to 50 $2,3,5,7,11,13,17,19,23$, $29,31,37,41,43,47$

Really useful for Prime Factor Decomposition, HCF and LCM

Factors
The factors of a number are the numbers which divide into it exactly
No remainder when divided by a factor

Factors of 24
1×24
2×12
3×8
4×6
$1,2,3,4,6,8,12,24$

Multiples

A number that features in the times table of another number

The product of two integers will produce a multiple

Times table knowledge important

Multiples of 9

$9,18,27,36,45,54,63,72,81,90$
Multiples of 7 between 30 and 60

Number - Prime Factor Decomposition, HCF, LCM

Prime Factor

Decomposition

Break numbers down into prime factors

Tree method and ladder method

HCF

Highest common factor
The largest number that divides
into two or more numbers
Use long format of Prime Factor Decomposition

LCM

Lowest common multiple
The smallest number that occurs in the times table of two or more numbers.

$$
84=2 \times 2 \times 3 \times 7
$$

$$
72=2^{3} \times 3^{2}
$$

$$
84=2^{2} \times 3 \times 7
$$

HCF of 48 and 120
$48=2 \times 2 \times 2 \times 2 \times 3$ $180=(2) \times(2 \times 3) \times 3 \times 5$
$2 \times 2 \times 3=\underline{\underline{12}}$
HCF of 84 and 980

$$
84=(2) \times 2 \times 3 \times(7)
$$

$$
980=(2) \times(2) \times 5 \times(7 \times 7
$$

$$
2 \times 2 \times 7=\underline{28}
$$

Divide by a prime

Multiply Primes

Write in index form

Prime factor decomposition

Identify shared factors

Multiply values

Multiply together all prime factors apart from duplicates

In index form: Multiply Highest Power of each prime

Number - Powers and Roots

Positive powers

Numbers multiplied by themselves

Index notation used to write easily
$4 \times 4 \times 4=4^{3 \text { 3 Power }}$ Base
$8^{4}=8 \times 8 \times 8 \times 8$
$\left(\frac{2}{3}\right)^{2}=\frac{2^{2}}{3^{2}}=\frac{2 \times 2}{3 \times 3}=\frac{4}{9}$
Anything to the power of 1 is just itself
$5^{1}=5 \quad 28^{1}=28$
Know square numbers and cube numbers

Negative powers

Negative powers are fractions

A negative power means "Take the reciprocal and make the
power positive"

$\sqrt[3]{\text { Cube root }}$
$\sqrt[4]{\text { Fourth root }}$

If you know square numbers and cube numbers,
you can find their roots

Fractional powers

Numerator and
denominator are important

2-Stage Powers:

$$
x^{\frac{m}{n}}=(\sqrt[n]{x})^{m}
$$

Root by denominator first
Then power of numerator

$$
16^{\frac{3}{2}}=(\sqrt[2]{16})^{3}=64
$$

Negative Fractional Powers: Apply reciprocal first!

$$
\begin{aligned}
\left(\frac{27}{64}\right)^{-\frac{2}{3}}= & \left(\frac{64}{27}\right)^{\frac{2}{3}}=\left(\frac{4}{3}\right)^{2} \\
& =\frac{16}{9}
\end{aligned}
$$

Algebra - Notation and Collecting like terms

Algebraic notation

Algebra is the language we use to communicate mathematical information

Letters used to represent values are known as variables.

Notation creates shortcuts
$a \times b$ becomes $a b$
$x+x+x+x$ becomes
$y \times y$ becomes y^{2}
$6 x y-5 \frac{a}{b}+21 x^{4}$
Expression

Terms

Collecting like terms

Collecting like terms enables us to simplify expressions making them easier to use

Terms that contain the exact same variable can be classed as 'like' terms and be simplified

Watch out for the sign before each term

$$
5 x+6 y-2 x-5 y=3 x+y
$$

$$
5 x y+3 x-2 x y+4 y=3 x y+3 x+4 y
$$

$$
2 x^{2}+3 x+5 x^{2}-5 x=7 x^{2}-2 x
$$

Identify like terms

Use coefficients to collect like terms
First step in many problems involving Algebra

Algebra - Formulae

Introduction

Explains how to calculate the value of a variable
"The price of a taxi fare in Manchester depends on the distance driven. Each fare is charged a flat fee of $£ 2$ and then $£ 3$ for each mile driven."

$$
C=2+3 M
$$

For any given trip, can easily work out the cost of a taxi

Area of circle formula

$$
\underset{\sim}{A}=\pi r^{2}
$$

Subject

Substitution

Replace letters in the formula with numbers you are given
"The perimeter of a square is 4 times the length of its sides"

$$
P=4 l
$$

What is perimeter of a square with side length 5 cm ?

$$
l=5 \quad P=4(5)
$$

$$
P=20 \mathrm{~cm}
$$

Identify the formula and the values to substitute in.

Substitute values in using brackets

Changing the subject

Often it is useful to re-arrange a formula to make a different variable the subject
Make l the subject of the formula

$$
y=\frac{18 t-3}{p} \quad \times p \quad \text { Make } t \text { the subject }
$$

$$
t=\frac{p y+3}{18}
$$

Sometimes a variable will appear more than once in a formula
Make x the subject of the formula:
Carry out calculation remembering
BIDMAS

$$
a=5 x+x y \rightarrow a=x(5+y)
$$

Factorise first

$$
\frac{a}{5+y}=x
$$

Algebra - Laws of indices

Basic Laws of Indices

Special indices to consider

These laws can be applied if the bases are the same
$x^{a} \times x^{b}=x^{a+b}$
$z^{3} \times z^{7}=z^{10}$
$x^{a} \div x^{b}=x^{a-b}$
$s^{2} \div s^{5}=s^{-3}$
When multiplying powers with
the same base - Add the powers

When dividing powers with the same base - Subtract the powers
$\left(x^{a}\right)^{b}=x^{a \times b}$
$\left(e^{4}\right)^{3}=e^{12}$

When raising the power (brackets)

- Multiply the powers

Advanced Laws of Indices

Negative Indices

Negative Fractional Powers:
Apply reciprocal first!
$9^{-\frac{3}{2}}=\frac{1}{9^{\frac{3}{2}}}=\frac{1}{(\sqrt[2]{9})^{3}}=\frac{1}{(3)^{3}}$

Algebra - Expanding brackets

Single Brackets

Multiply terms outside by all terms inside

$3 x(6 x-2)=18 x^{2}-6 x$

Expanding brackets often the first step in simplifying algebra
$\overparen{2(x+3 y)-7(2 x-y)=2 x+6 y-14 x+7 y}$ Include sign in $=-12 x+13 y$ multiplication

Double brackets

FOIL Method

Multiply each term in first bracket by each term in second
Grid Method

$$
(x+4)(x-3) \quad \text { Split brackets up around grid }
$$

Multiply each term in the grid

x	+4	
	x^{2}	$4 x$
-3	$-3 x$	-12

Algebra - Factorising

EZY MATHS

The process where an expression has common factors removed and brackets introduced

Highest common factor method

Look at whole expression, identify HCF and divide out

$12 x-6 y+3 z$	HCF $=3$	$12 x-6 y+3 z$	$3 \mid 12 x-6 y+3 z$
$3(4 x-2 y+z)$		$3(4 x-2 y+z)$	$4 x-2 y+1 z$
$a x+a b y+4 a z$	HCF $=a$	$a x+a b y+4 a z$	a $a x+a b y+4 a z$
$a(x+b y+4 z)$		$a(x+b y+4 z)$	$x+b y+4 z$

Ladder method

Divide out simple common factors repeatedly

$$
\begin{gathered}
12 x-6 y+3 z \\
3(4 x-2 y+z)
\end{gathered}
$$

$$
a \mid a x+a b y+4 a z
$$

$$
x+b y+4 z
$$

$18 x^{2} y+6 x y-24 x y^{2} z$

$$
6 x y(3 x+1-4 y z)
$$

Look at each term separately, divide numbers first then the algebraic terms

2	$18 x^{2} y+6 x y-24 x y^{2} z$
3	$9 x^{2} y+3 x y-12 x y^{2} z$
x	$3 x^{2} y+1 x y-4 x y^{2} z$
y	$3 x y+1 y-4 y^{2} z$

$$
\underset{d x y 217}{6 x y}(3 x+1-4 y z) 3 x+1-4 y z
$$

Algebra - Linear Equations

A linear equation has the unknown variables as a power of one in the form $a x+b=0$

Once the equation has been created,
it can be solved using a
balance method or inverse method.

Derived from the word 'Equal'	
This means that the $=$ symbol is involved	The left side has the same value as the right side.

The equation is balanced

Solving linear equations

General 4 step process

Expand brackets and simplify (collect like terms)
If x is on both sides, eliminate smallest value Eliminate excess number Divide and solve for x

Advanced equations

Equations where fractions are involved
Fractions are divisions and can be eliminated by multiplying

$$
\begin{array}{r}
\frac{x}{2}=5 \\
\times 2 \times 2
\end{array}
$$

Remove variable from denominator

Cross-multiplying allows us to move terms in a fraction from one side of an equation to the other

$$
\begin{gathered}
x+3=4 \\
-3=-3 \\
x=1
\end{gathered}
$$

$$
\frac{x+1}{3}<\frac{x}{2} \square 2(x+1)=3 x
$$

Algebra - Quadratics

An equation where the highest power of the variable is 2

Factorising $a \neq 1$ Quadratics

$a x^{2}+b x+c$

Factorising $a=1$ Quadratics

Aim: Convert quadratic into double brackets

$(x \pm)(x \pm)$

Sum and product rule
$x^{2}+b x+c$
Add to Multiply
make b to make c

$\xrightarrow[5 x^{2}-14 x-3]{(? x \pm})$

$$
\begin{array}{cc}
\begin{array}{c}
\text { Factors of a to find } \\
\text { possible values }
\end{array} & \begin{array}{c}
5 x^{2}-14 x-3 \\
\\
\\
\\
6 x^{2}+x-2=
\end{array} \\
(3 x \pm)(1 x \pm) \\
(6 x \pm)(1 x \pm)
\end{array}
$$

Then find factors of c and see which satisfy b
Difference of Two Squares (DOTS)
$a^{2}-b^{2}=(a+b)(a-b)$

$$
x^{2}-81=(x+9)(x-9)
$$

$$
4 y^{2}-25=(2 y+5)(2 y-5)
$$

Algebra - Sequences

Introduction

Each number in the sequence is known as a 'term'		
Identify what is happening between each term to generate the rule		
General rule is known as $n^{\text {th }}$ term.		
Triangular Numbers	Square Numbers	Cube Number
1	1	1
3	4	8
6	9	27
10	16	64
15	25	125

Arithmetic progressions

Finding the $n^{\text {th }}$ term rule

Quadratic sequences

Has the form $a n^{2}+b n+c$. A second layer difference

Halve $2^{\text {nd }}$ layer difference for n^{2} coefficient

$$
1 n^{2} \longrightarrow b n+c \rightarrow \begin{aligned}
& \text { Find linear } \\
& \text { sequence }
\end{aligned}
$$

Sequence	5	9	15	23
$1 n^{2}$	1	4	9	16
Subtract	4	5	6	7

$n^{\text {th }}$ term rule of this

$$
=n+3
$$

$$
1 n^{2}+1 n+3
$$

Statistics - Mean, Median, Mode and Range

Mean	Median	Mode	Range
Mean $=\frac{\text { Total of all values }}{\text { number of values }}$	Median = Middle value (Numbers written in order)	Mode = Most common value/item	Range $=$ Largest - Smallest
$\begin{gathered} 3,3,4,5,5,8,9,15 \\ \text { Mean }=\frac{52}{8}=6.5 \end{gathered}$	$\begin{gathered} 3,3,4,4,5,8,9,15 \\ \text { Median }=5 \end{gathered}$	$\begin{aligned} & 3,3,4,5,5,8,9,15 \\ & \text { Mode }=3 \text { and } 5 \end{aligned}$	$\begin{gathered} 3,3,4,5,5,8,9,15 \\ \text { Range }=15-3=12 \end{gathered}$
Collect it all together and share it out evenly	Finds the middle value	Average usually used for qualitative data	Reveals how close/far apart the values are
Using the mean to find the total amount	Use of formula to find location of median	Occurrence of no mode	Interpreting measures of spread
Mean \times Number of values	$\text { Location }=\frac{n+1}{2}$	If every value appears equally, there is no mode	The Smaller the range, the closer and more 'consistent'
Ezytown FC have scored an average of 3.8 goals per game in their last 15 matches. How many goals have they scored? $3.8 \times 15=57 \text { goals }$	The median of 45 values would be the $23^{\text {rd }}$ number when written in order $\frac{45+1}{2}=23$	$1,1,3,3,7,7$ Each value appears twice so there is no mode	the values are. The Larger the range, the more varied and more 'inconsistent' the values are.

Statistics - Averages from a frequency table

Cars	Frequency	$f x$
0	4	$\longrightarrow 0$
1	11	$\longrightarrow 11$
2	12	$\longrightarrow 24$
3	7	$\longrightarrow 21$
4	6	$\rightarrow 24$
Sum	40	80

This column is

 created by multiplying the frequency (f) by the number inthe category
(x)

Cars	Frequency
0	4
1	4
2	12
3	7
4	6
Sum	40

The median lies between $20^{\text {th }}$ and $21^{\text {st }}$ value

Median
Median $=$ Middle value (Numbers written in order)
Location $=\frac{n+1}{2}$
Location $=\frac{40+1}{2}=20.5$

Add down the frequency column. When location value has been exceeded, that is the group where the median lies.
Median $=2$

Mean

$$
\text { Mean }=\frac{\text { Total of all values }}{\text { number of values }}
$$

$$
\text { Mean }=\frac{\text { Total of } \text { fx column }}{\text { Total frequency }}
$$

$$
\text { Mean }=\frac{80}{40}=2
$$

Mode
Mode = Most common
value/item
The category with the highest
frequency
2

Range = Largest - Smallest

Statistics - Averages from a grouped frequency table EZY MATHS

Statistics - Representing data

Using a symbol to represent certain amount

Farmer	Pumpkins
Harry	20
Sami	50
Doug	40
Rachael	25

$=10$ Pumpkins		
Harry		
Sami		
Doug		
Rachael	\ddots	

Pie Charts

Pie Charts			
Nationality	Guests	Angle	Find degrees per value
Spanish	30	150°	$\left(360^{\circ} \div\right.$ total
British	24	120°	Nationality of Hotel Gue
French	10	50°	,
German	8	40°	
Total	72		(
$1 \text { Guest }=\frac{360^{\circ}}{72}=5^{\circ}$			
Line Charts			

Line charts are useful for displaying time series data

Data points within the lines are important
Lines visualise change
Extract required data carefully

Statistics - Cumulative Frequency tables and graphs

Cumulative Frequency tables

Running total (add up as we go down)

Time	Frequency	Cumulative Frequency
$45 \leq x<48$	3	3
$48 \leq x<50$	8	Equals
$50 \leq x<52$	16	11
$52 \leq x<55$	12	27
$55 \leq x<60$	11	Equals
$60 \leq x<70$	2	39

The difference between cumulative frequency values will tell you the frequency

May be asked to calculate percentages

$$
\%=\frac{\text { Amount }}{\text { Total }} \times 100
$$

Cumulative Frequency graphs

Points	Cumulative Frequency
$0-4$	6
$5-9$	18
$10-15$	25
$16-20$	30

Always plot each point at the end of the group

Draw a smooth line through the points

How many games did the player score more than 12 points?
$30-22=8$ games
What percentage of games does the player score less than 12 points?
$\frac{22}{30} \times 100=73 \%$

Statistics - Quartiles and box plots

| Lowest | Lower
 Quartile | Upper
 Quartile |
| :---: | :---: | :---: | Highest | The IQR provides a |
| :---: |
| measure of the spread |
| of the middle 50% of |
| the data. |

Statistics - Histograms

A special type of bar chart for grouped data

Frequency Density on the vertical axis

Bars can be different widths depending on the group size
Frequency Density $=\frac{\text { Frequency }}{\text { Class Width }}$

Age	Frequency	Class Width	F.D.	Create the Frequency density column
$20 \leq x<25$	300	5	60	
$25 \leq x<30$	150	5	30	
$30 \leq x<40$	100	10	10	
$40 \leq x<60$	100	20	5	

Clubbers by age

Calculating Frequency from Histograms

Frequency $=$ F. D. \times Class Width

Age	F.D.	Class Width	Frequency
$0<x \leq 10$	3 x	10	30
$10<x \leq 25$	4 X	15	60
$25<x \leq 30$	5 X	5	25
$30<x \leq 40$	3 X	10	30
$40<x \leq 50$	2.5 X	10	25

Statistics - Scatter Graphs

One of the main incentives for drawing lines of best fit is to make predictions

Place line of best fit through the middle of the data. (Ignore Outliers)

Predict values by
reading off the line
$40 \%=390$ seats © EzyEducation Itd 201 ,

Interpolation $\underset{\sim}{\sim}$

Extrapolation $\underset{\sim}{\text { Predictions made outside }}$ of the dataset

Number - Fractions - Simplifying, Improper, Mixed

Simplifying

Divide both the numerator and denominator by the same value
Repeat the process until the fraction
is in its simplest form

$\chi \Longrightarrow$ NUMERATOR	Even $=\div 2$
$y \longmapsto$ DENOMINATOR	Odd $=\div 3,5,7$

$$
\frac{32}{80} \stackrel{\div 2}{\div} 16 \stackrel{\div 2}{40 \div 2} 8 \xrightarrow{20} \stackrel{4}{\div 2} 4 \xrightarrow{\div 2} 2
$$

These are all equivalent fractions.

Improper Fractions

The numerator is larger than the denominator

Turning into a mixed number
13 Divide numerator by denominator 5 to get whole number
$2^{r 3}$ Remainder forms new numerator $2 \frac{3}{5}$ Denominator remains the same

Mixed Number
The combination of a WHOLE number and a Fraction

Turning into an improper fraction
$7 \frac{3}{8}$ Multiply whole number by denominator
$56+3$ Add on the numerator 59

Denominator remains the same

Don't forget to simplify your answers where necessary!
Useful skills for adding/subtracting/multiplying and dividing fractions

Number - Fractions - Addition and Subtraction

Adding or Subtracting fractions requires a common denominator

Adding/Subtracting Mixed Numbers

Method 1 - Deal with whole numbers and fractions separately

$$
3 \frac{1}{2}+4 \frac{1}{4} \square 3+4+\frac{1}{2}+\frac{1}{4} \square=7 \frac{3}{4}
$$

$$
5 \frac{2}{3}-2 \frac{1}{9} \square 5-2+\frac{2}{3}-\frac{1}{9} \square=3 \frac{5}{9}
$$

Method 2 - Convert to improper fractions first then calculate

$$
6 \frac{1}{5}-4 \frac{3}{4} \leftrightharpoons \frac{31}{5}-\frac{19}{4} \leftrightharpoons \frac{124}{20}-\frac{95}{20} \leftrightharpoons \frac{29}{20}=1 \frac{9}{20}
$$

$$
3 \frac{1}{5}+5 \frac{9}{10} \leftrightharpoons \frac{16}{5}+\frac{59}{10} \triangleleft \frac{32}{10}+\frac{59}{10}
$$

$$
\Rightarrow \frac{91}{10}=9 \frac{1}{10}
$$

Number - Fractions - Multiplying and Dividing

Multiplying

Check to see if you can cross cancel

Number - Fractions - Converting Decimal to Fraction EZY MATHS

Decimal -> Fraction Conversions you should know

Decimal	Fraction	$0.3 \rightarrow 1 / 10+1 / 10+1 / 10 \rightarrow 3 / 10$	
0.5	$1 / 2$		
0.3	1/3	0.1	$1 / 10$
0.25	1/4		
0.2	$1 / 5$		
0.125	1/8		
0.1	1/10		

Know your place values
Place Decimal part over 10/100/1000 etc.
Simplify the Fraction
Put back whole numbers if you had them

Number - Fractions - Converting Fraction to Decimal EZY MATHS

Division method
Divide the numerator by the denominator. Using Bus shelter division

Mixed Numbers and Improper Fractions
Process does not change.
Try and work with mixed numbers where possible.

Equivalent Fraction method
Multiply or Divide the fractions so that they can be converted to decimals easily

$\frac{13}{20} \xrightarrow{\times 5} \frac{65}{100}=0.65$

Decimal -> Fraction Conversions you should know

Decimal	Fraction	$3 / 4 \rightarrow 0.25+0.25+0.25 \rightarrow 0.75$	
0.5	$1 / 2$		
0.3	$1 / 3$	0.25	$1 / 4$
0.25	$1 / 4$		
0.2	$1 / 5$		
0.125	$1 / 8$		
0.1	1/10		

Number - Fractions - Converting recurring decimals

What is a recurring decimal?
A decimal number that will after a certain point, repeat itself indefinitely.

Written with a little dot above the number/s
$0 . \dot{6} \longrightarrow 0.6666666666666 \ldots$
$0.21 \longrightarrow 0.2133333333333 \ldots$
$0 . \dot{8} 4 \longrightarrow 1 \longrightarrow 0.841841841841 \ldots$

A recurring decimal as a fraction

$0 . \dot{x} \longrightarrow$| A single recurring digit will
 be a fraction over 9 |
| :---: | | $\frac{x}{9}$ |
| :--- |
| $0 . \dot{x} \dot{y} \longrightarrow$A double recurring digit
 will be a fraction over 99 |$\frac{x y}{99}$

$0 . \dot{x} y \dot{z} \longrightarrow$| A triple recurring digit will |
| :---: |
| be a fraction over 999 | $\frac{x y z}{999}$

More complex recurring decimals

Be in a position to eliminate the Decimal numbers

$$
\begin{gathered}
0.20 \dot{5} \\
(\times 100) 0.20 \dot{5}=x(\times 100) \\
\hline
\end{gathered}
$$

Move recurring decimal up to the decimal point

$$
\begin{array}{r}
\begin{array}{c}
100 x= \\
(\times 10)
\end{array}=\begin{array}{c}
20 . \dot{5} \\
(\times 10) \\
1000 x=205.5
\end{array} \\
x=\frac{185}{900}=\frac{37}{180}
\end{array}
$$

Create equation by labelling the decimal x
Move recurring decimal up to the decimal point by multiplying by 10/100 etc.
Be in a position to eliminate the recurring decimal by multiplying again by 10/100 etc.

Subtract two equations to eliminate recurring decimals and convert into fraction

RPR - Quantities as fractions/percentages of each other

Nigel earns $£ 90$ and saves $£ 30$. Sanjay earns $£ 100$ and saves $£ 35$. Who has saved a greater proportion of their

$$
\begin{array}{cc}
\text { Nigel }=\frac{30}{90}=\frac{1}{3} & \text { earnings? } \\
\downarrow & \text { Sanjay }=\frac{35}{100}=\frac{7}{20} \\
0 . \dot{\downarrow} & \underline{\downarrow} \quad
\end{array}
$$

Fractions of amounts

Quantities as percentages of each other
Express 5 as a
percentage of 20 $\begin{gathered}\text { Convert to fraction or } \\ \text { decimal then to percentage }\end{gathered}$

Method 1	Equivalent fraction over 100	$\frac{5}{20} \stackrel{x}{\times 5}_{\times 5}^{5} \frac{25}{100} \Rightarrow 25 \%$
Method 2	Convert to decimal	$5 \div 20 \Rightarrow 0.25 \stackrel{\times 100}{\times 100} 25 \%$

Percentages of amounts

Find 35% of 40
Method 1- Unitary method Method 2- Decimal method
Find $1 \%, 10 \%, 5 \%$ etc.

$$
\begin{aligned}
10 \% & =4(\div 10) \\
30 \% & =12 \\
+5 \% & =2 \\
\hline & 14
\end{aligned}
$$

Turn \% to a decimal
($\div 100$) Then multiply by amount

$$
35 \% \div 100=0.35
$$

$$
0.35 \times 40=14
$$

RPR - Percentages and percentage change

RPR - Simple interest and Compound Growth and Decay

Simple Interest
Follows the I=PRY formula
Interest \leadsto Principal \times Rate \times Years

Compound Growth

Calculate the Simple Interest earned on $£ 350$ at a rate of 9% p.a for 4 years?

To calculate other parts of the formula, you will need to change the subject
How many years would it take for $£ 45000$ to receive $£ 19800$ Simple Interest at a rate of 5.5% p.a?

A car worth $£ 15000$ depreciates in value at a rate of 15% p.a. What is the depreciated value of the car after 4 years

$$
£ 15000 \times 0.85^{4}=£ 7830.09
$$

To calculate other parts of the formula, you will need to change the subject

RPR - Ratio

Introduction	Sharing in a given ratio	Map scale factors
Is the relationship between two or more quantities		It is the ratio of a distance on the map/model to the corresponding
It is written in the form $\underline{\boldsymbol{a}: \boldsymbol{b}}$		Written in the form $\mathbf{1}$: \boldsymbol{n}
Compares one part to another part	number of parts parts together	
$\begin{array}{\|l\|l\|} \hline \text { The ratio of red to blue is } 4: 5 \\ \hline \text { The ratio of blue to red is } 5: 4 \\ \hline \end{array}$		$\left.\begin{array}{\|c\|c\|c\|}\text { Map } \\ \text { or } \\ \text { Model }\end{array}\right) \times \begin{gathered}\text { scale factor }\end{gathered}$
Sentence structure is important!	$\$ 40 \div 8=\$ 5$	10mm 101 cm
Simplifying Ratios		$100 \mathrm{~cm}=1 \mathrm{~m}$
	$3: 5 \stackrel{\text { Multiply by original ratio }}{\rightleftharpoons} \$ \$ 15: \$ 25$	$1000 \mathrm{~m}=1 \mathrm{~km}$ map has a scale of 1:25000.
Divide all numbers by the same value The ratio of boys to girls in a Geography class is 15 : 5 What fraction of the class is girls?	Mark and John have sweets in the ratio $3: 4$, If Mark has 27 sweets. How many does John have?	Michael is 6 cm from his home. How far from home is he? Give your answer in km $6 \mathrm{~cm} \times 25000=150000 \mathrm{~cm}$
$\frac{5}{20} \text { girls } \text { total parts } \Rightarrow \frac{1}{4}$	$27 \div 3=9$ sweets per part 	$150000 \mathrm{~cm} \stackrel{10}{\neg} 1500 \mathrm{~m} \stackrel{1000}{\square} 1.5 \mathrm{~km}$

RPR - Proportion

Direct Proportion

As one value increases, the other
increases at the same rate
Three Coffees cost £7.50, How much would five Coffees cost?
Find the value of one coffee then multiply
by quantity needed
$£ 7.50 \div 3=£ 2.50$ per coffee
$£ 2.50 \times 5=£ 12.50$

Inverse Proportion

As one value increases, the other decreases at the same rate
It takes 3 men 4 days to build a wall. How long would it take 2 men?
Find the time taken by one man then divide
by quantity stated
3 men $\times 4$ days $=12$ days
12 days $\div 2$ men $=6 \underline{\underline{d a y s}}$

Direct Proportion

y is directly proportional to x
$y \propto x \quad$ Constant of proportionality $y=k \times x \quad k$ is the rate of change

Solving direct proportion problems p is directly proportional to t.

$$
p=24, t=8
$$

a) Find p when $t=7$
b) Find t when $p=39$

Compare two values
$p=k \times t \quad \square 24=k \times 8$
Work out the value of k
$24=k \times 8 \stackrel{\div 8}{\square} \frac{24}{8}=k \triangleq 3=k$
Form equation to solve problems
$p=3 \times t \quad$ a) $p=3 \times 7=21$
b) 39 ЕЕЕมॄ

Inverse Proportion
y is inversely proportional to x $y \propto \frac{1}{x} \rightarrow y=\frac{k}{x}$ Constant of proportionality k

Solving inverse proportion problems p is inversely proportional to t.

$$
p=16, t=2
$$

a) Find p when $t=8$
b) Find t when $p=64$

Compare two values
Work out the value of k
$p=\frac{k}{t} \quad 16=\frac{k}{2} \stackrel{\times 2}{ } \quad 32=k$

Form equation to solve problems
$p=\frac{32}{t} \quad$ a) $p=\frac{32}{8}=4$
b) $64=\frac{32}{t} \longmapsto t=\frac{32}{64}=\underline{0.5}$

RPR - Graphical representations of Proportion

Geometry - Quadrilaterals

Know the names of these Quadrilaterals and their properties

Parallelogram

Opposite sides equal
Opposite angles equal
Diagonals Bisected
Opposite sides parallel

Isosceles Trapezium
One pair of
parallel sides
© EzyEducation Itd 2017

Geometry - Triangles

Know the names of these Triangles and their properties

Geometry - Polygons

They are classified by the number of sides they have

Number of sides	Name of shape
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
8	Octagon
9	Nonagon
10	Decagon

Geometry - 3D shapes

Geometry - Angle facts

Geometry - Angles in triangles and polygons

Triangles

All three angles can be orientated to fit on a straight line \rightarrow All angles in a triangle make 180°

Exterior angle = Sum of two angles on opposite side.

$$
\begin{gathered}
55^{\circ}+107^{\circ}=x^{\circ} \\
\underline{\underline{162}}{ }^{\circ}=x^{\circ}
\end{gathered}
$$

Isosceles triangle

It has two equal lengths
It has two equal angles

Polygons

Knowledge of triangles is important				
Number of sides	Number of	Sum of interior angles	Regular interior angle	Regular exterior angle
3	1	180°	60°	120°
4	2	360°	90°	90°
5	3	540°	108°	72°
6	4	720°	120°	60°
7	5	900°	129°	51°
8	6	1080°	135°	45°
n	$(n-2)$	$(n-2) \times 180^{\circ}$	$\frac{(n-2) \times 180^{\circ}}{n}$	$360^{\circ} \div n$

The number of triangles in a shape will always be TWO less than the number of sides

Geometry - Angles Parallel lines

Two lines that travel side by side keeping the same distance apart at all times, never intersecting.

Geometry - Pythagoras' Theorem

For any right angled triangle, the area of the square drawn on the
hypotenuse is equal to the sum of the areas drawn on the other
two sides.

Finding the Hypotenuse

If you know the lengths of the two shorter sides, you can calculate the length of the hypotenuse.

$c^{2}=8^{2}+6^{2}$

6

Finding the Shorter side

If you know the Hypotenuse and a shorter side, you can calculate the length of the other shorter side.

Geometry - Trigonometry functions

Trigonometry is used to calculate sides lengths and angles in triangles using three important ratios. Sine, Cosine and Tangent

The angle is often described as theta which is the Greek letter (θ)

Tangent Function
Work out side lengths and angles when given the adjacent and opposite

Only used to calculate an angle

Geometry - SohCahToa

Graphs - Coordinates

A set of values that indicate the position of a point.

They normally occur in pairs in the form (x, y)

Direction along the x-axis

Along the corridor

Start from a central point $(0,0)$ - Origin

Reading the coordinates will lead you to the exact position.

$(7,-4) \Longrightarrow$ Seven units right,Four units down
$(-2,6) \Longrightarrow$ Two units left, Six units up
$(-5,-2) \Longrightarrow$ Five units left, Two units Down

Graphs - Equation of a Straight line

Equation of line from coordinates

Calculate gradient between points (m)

Substitute in points and solve (c)

Find the equation of the line that passes through $(0,2)$ and $(3,8)$

$$
\text { Gradient }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \Rightarrow \frac{6}{3}=2 \Rightarrow(m)
$$

$$
\begin{aligned}
& y=2 x+c \stackrel{\text { substitute }}{\square} 8=2(3)+c \\
& 8=6+c \stackrel{\text { solve }}{\square} 2=c
\end{aligned}
$$

$$
y=m x+c
$$

$$
y=2 x+2
$$

Graphs - Midpoints, Parallel lines and Perpendicular lines

Midpoints
\qquadA midpoint is the halfway point between two end points of a line segment
$\left(\frac{x_{A}+x_{B}}{2}, \frac{y_{A}+y_{B}}{2}\right)$
\downarrow
Add up the x coordinates and halve it
Add up the y coordinates and halve it

Find the coordinate of the midpoint joining the points $(6,11)$ and $(15,-9)$

$$
\begin{aligned}
& x=\frac{6+15}{2} \\
& x=10.5 \\
& x(10.5,1)
\end{aligned} \quad y=\frac{11+-9}{2} y=1
$$

The distance between two

Find the equation of the line parallel to
$y=2 x+4$ that passes through $(4,2)$
Substitute in point and solve (c)
$y=2 x+c \square 2=2(4)+c$ points will always be the hypotenuse

$$
2=8+c \underset{-8}{\square}-6=c
$$

Parallel lines
Paralle lines are lines that run equidistant to each other and never intersect (cross)

Perpendicular lines

Perpendicular lines are lines that intersect (cross) to form 90° angles

Gradients that are negative reciprocals of each other.
Parallel lines have the same gradient. Different y - intercepts

Graphs - Contextual graphs

Graphs - Quadratic and Cubic graphs

Graphs - Reciprocal and Exponential graphs

Reciprocal graphs

x-axis and y-axis are asymptotes

As a increases, the graphs move further away from the origin.

Points can be found by substitution

Exponential graphs

As x continues to increase, y continues to rise or fall at a continually faster or slower rate.

When $k>1$, and x is positive, the graph will curve upwards

When $0<k<1$, or x is negative, the graph will curve downwards

Graphs - Equation of a circle

There is a specific general formula for the equation of a circle

$$
x^{2}+y^{2}=r^{2}
$$

$$
\underbrace{x^{2}+y^{2}}=\underbrace{r^{2}}
$$

Centered at Origin

Algebra Number Find the radius (r) $\stackrel{\rightharpoonup}{x^{2}+y^{2}}=25$

Radius $=5$

We may be asked to find the equation of a tangent to a circle at a given point.

What is the tangent to the circle $x^{2}+y^{2}=25$ at the point $(3,4)$?
$\underset{(\text { Radius })}{\text { Gradient }}=\frac{4}{3}$
$\begin{aligned} & \text { Gradient } \\ & (\text { Tangent })\end{aligned}=-\frac{3}{4}$
Perpendicular line

Finding the radius and equation using Pythagoras

$$
y=-\frac{3}{4} x+c \Rightarrow(3,4) \leftrightharpoons(4)=-\frac{3}{4}(3)+c \Rightarrow \frac{25}{4}=c
$$

$$
y=-\frac{3}{4} x+\frac{25}{4}
$$

Geometry - Perimeter and Area

Geometry - Advanced areas

Parallelogram
Imagine a tilted rectangle

Be sure to use perpendicular heights

Trapezium
A more complex formula to know
$\square=\frac{1}{2}(a+b) \times h$

Add the parallel sides
Halve it

Calculating area of a triangle using $1 / 2 a b \sin C$

We have two sides and the included angle

Geometry - Circle Definitions

Circumference

The perimeter around the circle

Diameter

The distance across the centre of the circle
Radius
The distance from the centre to the edge of the circle
Sector
Part of the area of a circle, enclosed by two radii
Arc

Part of the circumference of a circle
Tangent
A straight line that touches the curve of the circle at a point

Chord

A straight line segment between two points on the circle edge

Segment

Geometry - Area and Circumference

Area	Sector	
$A=\pi r^{2} \Rightarrow$ Pi times the radius squared Diameter is double the radius $\begin{aligned} & A=\pi \times 6.5^{2} \\ & A=\pi \times 42.25 \\ & A=132.73 m^{2} \end{aligned}$	$A=\frac{n^{\circ}}{360} \pi r^{2}$	Calculate the proportion of the circle required then use area formula $\begin{gathered} \frac{85^{\circ}}{360^{\circ}}\left(\pi \times 6^{2}\right) \\ 26.7 \mathrm{~cm}^{2} \end{gathered}$
Circumference		Arc length
$C=\pi d$ The circumference is always about $C=2 \pi r$ three time the length of the diameter	$L=\frac{n^{\circ}}{360} \pi d$	Calculate the proportion of the circle required then use circumference formula
$\begin{aligned} & C=\pi \times 12 \mathrm{~cm} \\ & C=37.7 \mathrm{~cm} \end{aligned}$		$\begin{gathered} \frac{85^{\circ}}{60^{\circ}}(\pi \times 12) \\ 8.90 \mathrm{~cm} \end{gathered}$

Geometry - Volume

The same cross sectional area
throughout
Volume $=$ Area of face \times depth

Pyramids

The volume of a pyramid is always $1 / 3$ of the prism that surrounds it

Volume $=\frac{\text { Area of base } \times \text { height }}{3}$
Calculate the volume of the square based pyramid if its height measures 15 cm

$12 \mathrm{~cm}^{2} \times 15 \mathrm{~cm}=2160 \mathrm{~cm}^{3}$ $2160 \mathrm{~cm}^{3} \div 3$ $720 \mathrm{~cm}^{3}$
Curved area of cone

Spheres

$$
\text { Volume }=\frac{4}{3} \pi r^{3}
$$

Find the volume of the sphere with diameter 16 cm . Give your answer to 3 significant figures

$$
\begin{gathered}
\text { Volume }=\frac{4}{3} \times \pi \times(8)^{3} \\
2144.660585 \mathrm{~cm}^{3} \\
2140 \mathrm{~cm}^{3}
\end{gathered}
$$

For a hemisphere, don't forget to halve your answer

$$
\text { Area }=\pi r l
$$

Number - Approximation and Error Intervals (Bounds) EZY MATHS

Approximation

Estimates tell us the rough value of a calculation
$\frac{103.5 \times 1.92}{51.36} \approx \frac{100 \times 2}{50}$

Rounding off makes it easier to calculate

Round
values to
1s.f.
$\frac{8.41 \times 3.2}{0.00216} \approx \frac{8 \times 3}{0.002} \leftrightharpoons \frac{24}{0.002} \leftrightharpoons \frac{24000}{2}$
$=12000$

Error Intervals

By definition, a rounded number does not give us the exact value
Lower Bound The minimum a value might be
Upper Bound The maximum a value might be
Continuous Values (Decimal values)

Halve accuracy level
Add on for Upper bound
$235 \mathrm{~m} \longleftrightarrow 240$Subtract for Lower bound

$$
235 m \leq x<245 m
$$

Discrete values (Whole values)
The number of people on a train is 400 to the nearest 100
350
 449

Geometry - Similarity and Congruence

Geometry - Transformations

Reflection

Reflection: the replacement of each point on one side of a line by the point symmetrically placed on the other side of the line.

Need a mirror line

Reflection in the line $x=-2$

Enlargement

Enlargement: the action of resizing a shape to the scale factor given from a specific point.

Need a Centre point
Need a scale factor
New shape
Original shape

From $(3,-6)$

Geometry - Congruence criteria for triangles

Side, Side, Side

All three sides of one triangle are equal to the corresponding sides of the other triangle.

Side, Angle, Side

Two sides and the included angle are equal to the corresponding sides and included angle of the other triangle

Angle, Side, Angle

Two angles and one side of a triangle are equal to the corresponding angles and side of the other triangle

© EzyEducation Itd 2017

Right, Hypot, Side

Each triangle contains a right angle, the hypotenuses are equal in length as well as another equal comparative side.

Geometry - Constructing bisectors and Loci

The locus of points from a point is a circle

The locus of points between two points is the perpendicular bisector

A locus is a series of points that satisfy a particular condition. Loci is the plural and will often involve several conditions.

Algebra - Solving by factorising and the Quadratic formula

Solving by factorising

$a x^{2}+b x+c=0 \Rightarrow(x \pm)(x \pm)=0$
Factorise the quadratic - You may need to rearrange first

$$
\begin{gathered}
x^{2}+8 x+7=0 \underset{x}{x}=-7 \text { or }-1
\end{gathered}
$$

Find values for x that will make each bracket $=0$
$2 x^{2}-2 x=3(1-x) \square 2 x^{2}-2 x=3-3 x$ Expand and
rearrange to $=0$

$$
2 x^{2}+x-3=0 \Rightarrow(2 x+3)(x-1)=0
$$

$$
x=-\frac{3}{2} \text { or }+1
$$

The quadratic formula

$$
\begin{gathered}
\begin{array}{c}
\text { The formula } \\
\text { you need to } \\
\text { know }
\end{array} \\
\end{gathered}
$$

Substitute values into the formula to generate two answers for x

$$
{ }_{a}^{5} x^{2}+{ }_{b}^{8 x}-4{ }_{c}^{4} \quad \text { Identify values of } a, b \text { and } c
$$

$$
x=\frac{-(8) \pm \sqrt{(8)^{2}-4(5)(-4)}}{2(5)}
$$

S Substitute and simplify

$$
x=\frac{-8 \pm \sqrt{144}}{10}
$$

Carry out two calculations

$$
x=0.4 \text { or }-2
$$

Algebra - Completing the square and solving quadratics

EZY MATHS

Changing the form of the quadratic

$$
\begin{gathered}
a x^{2}+b x+c \leadsto(x+p)^{2}+q \\
x^{2}+b x+c \\
(x+b / 2)^{2}-(b / 2)^{2}+c \\
\text { Halve the } \wp \text { coefficient of } b \\
(x+p)^{2}+q \\
x^{2}+6 x-2 \underset{\square}{\square}(x+3)^{2}-(3)^{2}-2
\end{gathered}
$$

$$
(x+3)^{2}-11
$$

Solving equations by completing the square

$$
\begin{aligned}
& \begin{array}{c}
\text { Complete the square } \\
x^{2}-10 x+15=0 ~ \\
(x-5)^{2}=+10 \measuredangle(x-5)^{2}-10=0 \\
(x-2) \\
x-5= \pm \sqrt{10}
\end{array} \\
& x=5 \pm \sqrt{10} \longmapsto \begin{array}{l}
\text { Solve equation } \\
x=5+\sqrt{10} \\
x=5-\sqrt{10}=8.16 \\
=1.84
\end{array}
\end{aligned}
$$

Completing the square $a \neq 1$

Complete the square.

Expand
$3(x+1)^{2}-7=0$
Solve for x.

$$
\begin{aligned}
& 3(x+1)^{2}-7=0 \quad \text { Add } 7 \text { to both sides } \\
& 3(x+1)^{2}=7 \\
& \text { Divide both sides by } 3 \\
& (x+1)^{2}=\frac{7}{3} \\
& \text { Square root both sides } \\
& \left.x+\underset{\text { © Ezeducationtd } 20}{1}= \pm \sqrt{\frac{7}{3}} \begin{array}{c}
\begin{array}{c}
\text { Subtract } 1 \\
\text { from both } \\
\text { sides }
\end{array} \\
\text { sider }
\end{array}\right) \Rightarrow x=-1 \pm \sqrt{\frac{7}{3}} x=0.528 \text { or }-2.528
\end{aligned}
$$

Algebra - Simultaneous equations

Simultaneous equations

Equations involving two or more unknowns that are to have the
same values in each equation

$4 x+3 y=5$	$2 x-3 y=4$	$3 y+10 x=7$
$3 x+2 y=4$	$5 x+2 y=1$	$y=2 x+1$

Linear equations (Elimination method)

Multiply equations to get
matching coefficients
matching coefficients

Add/subtract equations

Substitute to find second variable

$$
\begin{aligned}
& 4 x+3 y=5 \times 3 \\
& 3 x+2 y=4 \times 4
\end{aligned} \Rightarrow \begin{array}{r}
12 x+9 y=15 \\
-12 x+8 y=16 \\
y=-1
\end{array}
$$

Substitute $y=-1$ into equation 2

$$
3 x+2(-1)=4 \square 3 x-2=4 \square x=2
$$

Matching coefficients:

Same signs (Subtract the equations)
Opposite signs (Add the equations)

Linear equations (Substitution method)
$3 y+10 x=7 \Rightarrow 3 y+10 x=7 \quad$ Rearrange to get a $y-2 x=1 \quad \forall y=2 x+1$ Substitute $y=2 x+1$ into equation 1
$3(2 x+1)+10 x=7$

$$
\begin{aligned}
& 16 x+3=7 \\
& x=0.25 \\
& \hline
\end{aligned}
$$

Substitute $x=0.25$ into equation 2

$$
y=2(0.25)+1 \Rightarrow y=1.5
$$

Substitute to find
second variable
Quadratic equations (Substitution method)

$$
\begin{aligned}
& y=x+6 \\
& y=x^{2}-2 x+2
\end{aligned} \Rightarrow \begin{aligned}
x+6 & =x^{2}-2 x+2 \\
0 & =x^{2}-3 x-4
\end{aligned}
$$

$$
\text { Substitute equation into quadratic and rearrange to }=0
$$

$$
(x+1)(x-4)=0 \quad x=-1 \text { or }+4
$$

Factorise and find two solutions for variable

$$
\begin{array}{ll}
y=(-1)+6 & y=(4)+6 \\
y=5 & y=10
\end{array}
$$

Substitute each answer to find other pair of solutions

Algebra - Inequalities

Symbols

Inequalities on a numberline

Solving Linear inequalities

Same process as solving linear equations
$x+5 \leq 16$
$x \leq 16-5$
$x \leq 11$

When we multiply or divide by a negative number, we must flip the inequality sign
$-2 x>4 \quad 4<3 x+1<16$
$x<-2$
$1<x<5$

Solving Quadratic inequalities

Same process as
solving equations

$x^{2} \leq 16$
$\sqrt{ }=14$
$x= \pm 4$
The roots
$-4 \leq x \leq 4$

The range of values below the line

Sketch the graph to interpret the range of values required.

Two variable inequalities

Inequalities with 2-variables need to be
represented on a graph

Shade the region satisfied by the inequalities: $y>-x, y \leq 4, x<3$

Draw the line graph for each inequality
$<$ - Dashed line
\leq - Solid line

Statistics - Probability

Counting outcomes

Working out how many combinations
there are
Rolling a die and flipping a coin

	1	2	3	4	5	6
Heads	H, 1	H, 2	H, 3	H, 4	H, 5	H, 6
Tails	T, 1	T, 2	T, 3	T, 4	T, 5	T, 6

This is a sample space diagram
There are 12 possible outcomes from this event

Calculating probability

$P($ Event $)=\frac{\text { number of successful outcomes }}{\text { total number of outcomes }}$

Simplify answers where possible

The 'OR' rule (mutually exclusive)

$$
P(a \text { or } b)=P(a)+P(b)
$$

Flip a coin twice
$P(2$ tails $)=\frac{1}{2} \times \frac{1}{2} \underset{\text { © EzyEducation } \operatorname{ltd} 2017}{4} \frac{1}{4}$

Multiply
each probability

Types of events

Mutually exclusive
Events that cannot happen at the same time
Rolling a die $\rightarrow P(1$ and 6$)$
All probabilities from the event will sum to make 1

Independent events
Events where the outcome of one doesn't
affect the outcomes of the others
Picking a counter out of a bag, replacing it and repeating.
Dependent events
Events where the outcome of one does affect the outcomes of the others Picking a counter out of a bag, not replacing it and repeating.
Calculating expected outcomes
$P($ event $) \times$ number of trials

Statistics - Venn Diagrams and Probability trees

Venn diag		ility trees
A set is a collection of things, called elements	Probability trees are really useful to calculate the probabilities of combined events happening	
The set of prime numbers less than 12 $A=\{2,3,5,7,11\}$		Multiply along branches
Inte		$P(\text { Red and Red })$
$\begin{gathered} A=\{2,3,5,7,11\} \quad B=\{1,3,5,7,9\} \\ A \cap B=\{3,5,7\}-\text { Intersection of } A \text { and } B \end{gathered}$		$P(1 \text { Red and } 1 \text { Blue })=\frac{2}{15}+\frac{6}{15}=\frac{8}{15}$
crossover between		Add together all combinations
$A \cup B=\{1,2,3,5,7,9,11\}-$ Union of A and B All values in the sets	Dependent events	
$A^{\prime} \cap B=\{1,9\}$	Probability trees where the outcome of one events affects the outcome of the next event e.g. no replacement, weather etc.	
		$\begin{aligned} & P(\text { Rain and late })=(0.3 \times 0.4)=0.12 \\ & P(\text { On time })=(0.18+0.56)=0.74 \end{aligned}$ When dealing with no replacement, remember to reduce the denominator by one for the second event

Number - Standard Form

Basic Structure
$1 \leq a<10 \longleftarrow a \times 10^{b} \longrightarrow$ Whole number
$2.83 \times 10^{6}=2830000$
Positive power of $10=$ Large number

$$
3.14 \times 10^{-4}=0.000314
$$

Negative power of $10=$ Small decimal number
Add/Subtract Standard form
Take numbers out of Standard form.
Add/Subtract values.
Convert answer back to Standard form.

$$
\begin{aligned}
& \left(3.23 \times 10^{4}\right)+\left(8.2 \times 10^{3}\right) \\
& =32300+8200 \\
& = \\
& =40500 \\
& =4.05 \times 10^{4} \\
& \hline
\end{aligned}
$$

Multiply/Divide Standard form

Separate the numbers and powers of 10.
Multiply/Divide numbers,
Apply laws of indices to power of 10 s Give answer in Standard form
$\left(4.6 \times 10^{4}\right) \times\left(3 \times 10^{3}\right)$
$\frac{4.6 \times 3}{13.8 \times 10^{4} \times 10^{3}}$

$$
1.38 \times 10^{8}
$$

$$
\left(1.56 \times 10^{-4}\right) \div\left(7.5 \times 10^{-7}\right)
$$

$$
\frac{1.56 \div 7.5}{0.208} \times \frac{10^{-4} \div 10^{-7}}{10^{3} x}
$$

$$
2.08 \times 10^{2}
$$

Algebra - Algebraic fractions

Addition and Subtraction

Make sure the denominators are the same

$$
\frac{x}{y}+\frac{3}{y}=\frac{x+3}{y}
$$

Multiply fraction/s to achieve same denominator

$$
\frac{x^{2}+5}{y^{2}}+\frac{x}{y \times y} \leadsto \frac{x^{2}+5}{y^{2}}+\frac{x y}{y^{2}} \leadsto \frac{x^{2}+5+x y}{y^{2}}
$$

Same rules apply in Subtraction

$\frac{x^{2}}{9(x-5)}-\frac{x+4}{x-5} \times 9 \quad \square \frac{x^{2}}{9(x-5)}-\frac{9(x+4)}{9(x-5)}$

Expand brackets and simplify where possible on the numerators

$$
\frac{x^{2}-9 x-36}{9(x-5)}
$$

$$
\frac{2}{x+1}-\frac{5 x}{x-4} \Rightarrow \frac{2(x-4)}{(x-4)(x+1)}-\frac{5 x(x+1)}{(x-4)(x+1)}
$$

$$
2(x-4)-5 x(x+1)
$$

$$
(x-4)(x+1)
$$

Multiplication and Division

Multiply across the numerators and denominators

| Cross cancel terms | | |
| :---: | :---: | :---: | :---: |
| where possible | Simplify each | Factorise |
| fraction | expressions | |

$$
\frac{2}{x} \times \frac{x^{2}}{y} \mapsto_{1} \frac{2}{x} \times \frac{x^{2 x}}{y} \Rightarrow \frac{2 x}{y}
$$

$\frac{6 a+6 b}{2} \times \frac{1}{a+b} \stackrel{\text { Factorise }}{ } \frac{6(a+b)}{2} \times \frac{1}{a+b}=3$
To divide, multiply by reciprocal of $2^{\text {nd }}$ fraction

$$
\frac{4 y z}{x} \div \frac{y z^{2}}{10} \stackrel{\text { Keep, change, flip }}{ }{ }^{\frac{4 y z}{x}} \times \frac{10}{y z^{2}}
$$

$$
\frac{4 y z}{x} \times \frac{10}{y z^{2} z} \Rightarrow \frac{40}{x z}
$$

Algebra - Functions

Think of it as a machine that has an input which is processed by the function to give an output.

Using functions

$$
\left.\begin{array}{l}
g(x)=\sqrt{4 x-3} \text { find } g(21) \\
g(21)=\sqrt{4 x-3} \begin{array}{c}
\text { Substitute input into the } \\
\text { function and calculate }
\end{array} \\
g(21)=\sqrt{81} \Rightarrow g(21)= \pm 9
\end{array}\right] \begin{aligned}
& f(t)=3 t^{2}+2 \text { find } f(2) \\
& f(2)=3 t^{2}+2 \quad \begin{array}{c}
\text { Substitute input into the } \\
\text { function and calculate }
\end{array} \\
& f(2)=12+2 \Rightarrow f(2)=14
\end{aligned}
$$

Inverse functions

\(\left.\begin{array}{c}A function that performs the

opposite process of the

original function\end{array}\right]\)| You have been given the |
| :---: |
| output and need to work out |
| the value of the input. |

Normal function
Inverse function

$f(x)$

Two ways to solve problems involving inverse functions $f(x)=5 x+2$
Function machine method
Subject of Formula method

Composite functions

The combination of two or more functions to create a new function

$$
\begin{aligned}
& f(x)=2 x+2 \text { and } g(x)=x-2 \text {. The output of } g(x) \text { will form } \\
& \text { Find } f g(x) \\
& g(x)=x-2 \\
& f(x)=2 x+2 \downarrow \quad f(x-2)=2(x-2)+2
\end{aligned}
$$

RPR - Rates of change

Rate of Change

A rate that describes how one quantity changes in relation to another quantity
It is represented by the
Gradient of a line
Gradient $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Gradient $=\frac{\text { Rise }}{\text { Run }}$

Interpreting Rates of Change

Gradient $\Longrightarrow \underset{$| Amount of $(y) \text { per }$ |
| :---: |
| Amount of (x) |$}{\substack{\text { and }}}$

Average rate of change

The rate of change over a given interval

Create chord between two intervals
Calculate gradient of chord
Interpret gradient as a rate of change

Instantaneous rate of change

The rate of change at a particular moment

Create tangent at specific point
Calculate gradient of tangent
Interpret gradient as a rate of change
Rate of change $=\$ 50$ per month

Graphs - Translations and Reflections

Translation

A translation can be defined as the movement 'sliding' of a shape to a new position

$f(x)+a$	$f(x+a)$	
The graph shifts up/down the y-axis by a units	The graph shifts left/right along	$+=$ Left
	the x-axis by a units	$-=$ Right

Adding to the function causes a Translation
Given $f(x)$,
Sketch $f(x-3)+5$

3 units right 5 units up

Reflection

Reflection: The replacement of each point on one side of a line by the point symmetrically placed on the other side of the line.

The graph is reflected
in the \boldsymbol{x}-axis

The graph is reflected
in the y-axis

Graphs - Using graphs to find solutions

When we are given a system of equations, we can find the solutions to these equations algebraically (simultaneous equations) or graphically.
$y=x+1$ 2x+3y=18

$$
\left.\begin{array}{l}
y=x^{2}-2 \\
y=2 x+1
\end{array}\right]
$$

$$
x=3 \quad y=4
$$

Solve simultaneously
or graph each equation

Find the solutions of x when

$$
x^{2}-2=7
$$

$$
\begin{gathered}
\text { Plot graph and } \\
\text { read off points } \\
\hline x=3 \\
\text { or } \\
x=-3
\end{gathered}
$$

Plot each equation separately

Identify and read off the points of intersections for your solutions

Use graph to read off specific values for x and y

Graphs - Estimating gradients, Area under a curve

These are not very accurate and do not show the full picture

Break the graph down into smaller
pieces to see what is happening

Gradient $A=1 / 3 \longrightarrow 0.3 \mathrm{~m} / \mathrm{s}$
Gradient $B=5 / 3 \longrightarrow 1.7 \mathrm{~m} / \mathrm{s}$
Gradient $C=3 / 5 \longrightarrow 0.6 \mathrm{~m} / \mathrm{s}$

Find out what is happening at a
particular point - Tangents

Gradient $A=\frac{1.5}{2}$
$0.75 \mathrm{~m} / \mathrm{s}$ at 3 seconds
Gradient $B=\frac{3.5}{2}$
$1.75 \mathrm{~m} / \mathrm{s}$ at 5 seconds
Estimate because tangents vary

Area under a curve

The area under a curve will enable you to estimate the total distance travelled in velocity time graphs
Formulae needed

Trapezium
$\frac{1}{2}(a+b) \times h$
Triangle 1 $\frac{1}{2}(b \times h)$

Estimate the distance travelled for the first ten seconds

tion Itd 2017

Geometry - Sine and Cosine rules

Using Trigonometry to calculate missing angles and side lengths in non right angled triangles

The Sine rule formula
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ or $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

Missing length
Missing angle
We tend to use the Sine rule if we know an angle and its opposite length
$355^{35} \quad \frac{35}{\sin (125)}=\frac{x}{\sin (35)} \quad \times \sin (35)$
$\frac{35}{\sin (125)} \times \sin (35)=x \quad \underline{24.51 m}$

$$
\frac{\sin \left(x^{\circ}\right)}{28}=\frac{\sin (40)}{21} \times 28
$$

$$
\sin (x)=\frac{\sin (40) \times 28}{21}
$$

$$
x^{\circ}=\sin ^{-1}\left(\frac{\sin (40) \times 28}{21}\right)_{0}
$$

The Cosine rule formula

If we know two sides AND the included angle

$$
\begin{aligned}
& x^{2}=(90)^{2}+(35)^{2}-\left(2(90)(35) \cos \left(68^{\circ}\right)\right) \\
& x^{2}=6964.978 \ldots \\
& x=83.46 \mathrm{~km}
\end{aligned}
$$

$$
\begin{aligned}
& \cos x=\frac{(60)^{2}+(35)^{2}-(90)^{2}}{2(60)(90)} \underbrace{c}_{60} \underbrace{B}_{A} \\
& \cos x=-0.303 \ldots
\end{aligned}
$$

$$
x=\cos ^{-1}(-0.303 \ldots) \quad \underline{x=107.7^{\circ}}
$$

Graphs - Trigonometric Graphs

Statistics - Types of data and Sampling

Probability and Statistics - Frequency and Two-Way Tables

Favourite Colour				Tally Up	Add Tally Marks				
				Colour	Tally	Frequency	Relative Frequency		
Yellow	Blue	Red	Red	Yellow		1	1/20 $=0.05$		
Red	Blue	Green	Pink	Blue	HHII	7	$7 / 20=0.35$		
Blue	Red	Blue	Green	Red	HIII	7	$7 / 20=0.35$		
Pink	Red	Blue	Red	Green	\|			3	$3 / 20=0.15$
Red	Blue	Green	Blue	Pink	1	2	$2 / 20=0.1$		
					Sum	20			

Relative
frequency
describes
what
proportion
selected
that colour

$$
\begin{aligned}
& \text { If the sample } \\
& \text { size is large } \\
& \text { enough, we } \\
& \text { can interpret } \\
& \text { relative } \\
& \text { frequencies } \\
& \text { as } \\
& \text { probabilities }
\end{aligned}
$$

Two-Way Frequency Tables		Provides information about the frequency of two variables	
	Year 12	Year 13	Total
Male	120	80	200
Female	70	100	170
Total	190	180	370

Rows and columns add up!

	Year 12	Year 13	Total
Male	120	80	200
Female	70	100	170
Total	190	180	370

Number of girls in Year 12 is 70.
© EzyEducation Itd 2017
Use to calculate missing values

Geometry - Circle Theorems

Angle at the centre is twice the angle at the circumference

Look for the 'Arrow' Shape!
Angles in the same segment are equal

Look for the 'Bow' Shape!
 by a semicircle is 90°

Opposite angle to the diameter!
Opposite angles in a cyclic quadrilateral sum to 180°

Tangents from a point have equal length

Alternate Segment Theorem

Tangent

Number - Surds and Rationalising the denominator

Surds

Surds are expressions which contain an irrational square root $\sqrt{a} \times \sqrt{b}=\sqrt{a \times b} \sqrt{3} \times \sqrt{7}=\sqrt{3 \times 7}=\sqrt{21}$
$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}} \frac{\sqrt{6}}{\sqrt{10}}=\sqrt{\frac{6^{3}}{10}}{ }^{3}=\sqrt{\frac{3}{5}}$
$\sqrt{a}+\sqrt{b} \neq \sqrt{a+b} \sqrt{5}+\sqrt{20}=\sqrt{25} \boldsymbol{x}$

Writing in the form $a \sqrt{b}$

Rationalising the denominator

Rationalising the denominator involves removing all of the roots from the bottom of a fraction.

$$
\frac{6}{\sqrt{3}} \Rightarrow \frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \begin{gathered}
\begin{array}{c}
\text { Multiply top } \\
\text { and bottom by } \\
\text { irrational root }
\end{array} \Rightarrow \frac{6 \sqrt{3}}{\sqrt{9}} \Rightarrow \frac{6 \sqrt{3}}{3}
\end{gathered}
$$

A more complex denominator

Geometry - Vectors

Number - Units - Mass, Length, Area and Volume

Area and Volume

Area is a 2D measurement formed by multiplying two lengths

$$
\begin{gathered}
100 \mathrm{~mm}^{2}=1 \mathrm{~cm}^{2} \\
10,000 \mathrm{~cm}^{2}=1 \mathrm{~m}^{2} \\
1,000,000 \mathrm{~m}^{2}=1 \mathrm{~km}^{2}
\end{gathered}
$$

Squared units results in squared conversion factors

Length

Standard	$10 \mathrm{~mm}=1 \mathrm{~cm}$		
Metric			
Conversions		\quad	$100 \mathrm{~cm}=1 \mathrm{~m}$
:---			
$1,000 \mathrm{~m}=1 \mathrm{~km}$			

Volume is a 3D measurement formed by multiplying three lengths

$$
\begin{gathered}
1000 \mathrm{~mm}^{3}=1 \mathrm{~cm}^{3} \\
1,000,000 \mathrm{~cm}^{3}=1 \mathrm{~m}^{3} \\
1,000,000,000 \mathrm{~m}^{3}=1 \mathrm{~km}^{3}
\end{gathered}
$$

Time	
Conversions between units are not decimal	
1 Week 7 days 1 Day 24 hours 1 Hour 60 minutes 1 Minute 60 seconds	

Convert 350 seconds into minutes and seconds

1 Minute	60 seconds
2 Minutes	120 seconds
3 Minutes	180 seconds
4 Minutes	240 seconds
5 Minutes	300 seconds
6 Minutes	360 seconds

$4: 23 \mathrm{am}+\overbrace{\text { 10 }}^{+6}$ hours

Money

$$
\begin{array}{r}
£ 65.20 \\
£ 10.00 \\
+\quad 0.65 \\
\hline £ 75.85
\end{array}
$$

Adding and Subtracting money requires lining up the decimal point

Exchange rate calculations

Money comes in specific denominations

Geometry - Bearings

Angle clockwise
from North
Always 3 digits

310°

Clockwise

$$
\begin{aligned}
75^{\circ} & \rightarrow 075^{\circ} \\
4^{\circ} & \rightarrow 004^{\circ}
\end{aligned}
$$

Sentence Structure Important

The bearing of B from A is 075°

$\phi^{\circ}=360^{\circ}-105^{\circ}=255^{\circ}$

