Core Maths C2

Revision Notes

November 2012

Core Maths C2

1 Algebra 3
Polynomials: +, -, x, \div 3
Factorising 3
Long division 3
Remainder theorem 3
Factor theorem. 4
Choosing a suitable factor 5
Cubic equations. 6
2 Trigonometry 6
Radians 6
Connection between radians and degrees 6
Arc length, area of a sector and area of a segment 6
Trig functions 6
Basic results 6
Exact values for $30^{\circ}, 45^{\circ}$ and 60° 7
Graphs of trig functions 7
Graphs of $y=\sin n x, y=\sin (-x), y=\sin (x+n)$ etc. 7
Sine \& Cosine rules and area of triangle 8
Identities 8
Trigonometric equations 9
3 Coordinate Geometry 10
Mid point 10
Circle. 10
Centre at the origin 10
General equation 10
Equation of tangent 11
4 Sequences and series 12
Geometric series 12
Finite geometric series. 12
Infinite geometric series 12
Proof of the formula for the sum of a geometric series 13
Binomial series for positive integral index 14
Pascal's triangle 14
Factorials. 14
Binomial coefficients or ${ }^{n} C_{r}$ or $\binom{n}{r}$ 14
5 Exponentials and logarithms 15
Graphs of exponentials and logarithms 15
Rules of logarithms 15
Changing the base of a logarithm. 16
Equations of the form $a^{x}=b$ 17
6 Differentiation 17
Increasing and decreasing functions 17
Stationary points and local maxima and minima (turning points). 18
Using second derivative 18
Using gradients before and after. 19
Maximum and minimum problems. 20
7 Integration 21
Definite integrals 21
Area under curve 21
Numerical integration: the trapezium rule 22
Index 23

1 Algebra

Polynomials: $\quad+,-, x, \div$

A polynomial is an expression of the form

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots a_{2} x^{2}+a_{1} x+a_{0}
$$

where all the powers of the variable, x, are positive integers or 0 .
,,$+- \times$ of polynomials are easy, \div must be done by long division.

Factorising

General examples of factorising:

$$
\begin{aligned}
& 2 a b+6 a c^{2}=2 a\left(b+3 c^{2}\right) \\
& x^{2}-5 x+6=(x-2)(x-3) \\
& x^{2}-6 x=x(x-6) \\
& 6 x^{2}-11 x-10=(3 x+2)(2 x-5)
\end{aligned}
$$

Standard results:

$$
\begin{aligned}
& x^{2}-y^{2}=(x-y)(x+y), \quad \text { difference of two squares } \\
& (x+y)^{2}=x^{2}+2 x y+y^{2}, \\
& (x-y)^{2}=x^{2}-2 x y+y^{2}
\end{aligned}
$$

Long division

See examples in book

Remainder theorem

If 627 is divided by 6 the quotient is 104 and the remainder is 3 .
This can be written as $627=6 \times 104+3$.
In the same way, if a polynomial
$P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{n} x^{n}$ is divided by $(c x+d)$ to give a quotient, $Q(x)$ with a remainder r, then r will be a constant (since the divisor is of degree one) and we can write
$P(x)=(c x+d) \times Q(x)+r$
If we now choose the value of x which makes $(c x+d)=0 \Rightarrow x=-d / c$
then we have $P(-d / c)=0 \times Q(x)+r$
$\Rightarrow \quad P(-d / c)=r$.

Theorem: If we substitute $\quad x=\frac{-d}{c}$ in the polynomial we obtain the remainder that we would have after dividing the polynomial by $(c x+d)$.

Example: The remainder when $P(x)=4 x^{3}-2 x^{2}+a x-4$ is divided by $(2 x-3)$ is 7 . Find a.

Solution: \quad Choose the value of x which makes $(2 x-3)=0$, i.e. $x=3 / 2$.
Then the remainder is $P(3 / 2)=4 \times(3 / 2)^{3}-2 \times(3 / 2)^{2}+a \times(3 / 2)-4=7$

$$
\begin{aligned}
& \Rightarrow \quad 27 / 2-9 / 2+a \times(3 / 2)-4=7 \quad \Rightarrow \quad 5+a \times(3 / 2)=7 \\
& \Rightarrow \quad a=4 / 3 .
\end{aligned}
$$

You may be given a polynomial with two unknown letters, a and b. You will also be given two pieces of information to let you form two simultaneous equations in a and b.

Factor theorem

Theorem: If, in the remainder theorem, $r=0$ then $(c x+d)$ is a factor of $P(x)$

$$
\Rightarrow \quad P(-d / c)=0 \quad \Leftrightarrow \quad(c x+d) \text { is a factor of } P(x)
$$

Example: A quadratic equation has solutions (roots) $x=-1 / 2$ and $x=3$. Find the quadratic equation in the form $a x^{2}+b x+c=0$
Solution: The equation has roots $x=-1 / 2$ and $x=3$
$\Rightarrow \quad$ it must have factors $(2 x+1)$ and $(x-3) \quad$ by the factor theorem
\Rightarrow the equation is $(2 x+1)(x-3)=0$
$\Rightarrow \quad 2 x^{2}-5 x-3=0$.

Example: \quad Show that $(x-2)$ is a factor of $P(x)=6 x^{3}-19 x^{2}+11 x+6$ and hence factorise the expression completely.

Solution: Choose the value of x which makes $(x-2)=0$, i.e. $x=2$
$\Rightarrow \quad$ remainder $=P(2)=6 \times 8-19 \times 4+11 \times 2+6=48-76+22+6=0$
$\Rightarrow \quad(x-2)$ is a factor by the factor theorem.
We have a cubic and so we can see that the other factor must be a quadratic of the form $\left(6 x^{2}+a x-3\right)$ and we can write
$6 x^{3}-19 x^{2}+11 x+6=(x-2)\left(6 x^{2}+a x-3\right)$
Multiplying out we see that the $6 x^{3}$ and +6 terms are correct.
The x term is $11 x$

Multiplying out the x term comes from $x \times-3+-2 \times a x$ which must come to $11 x$
$\Rightarrow \quad a=-7$.
We must now check the x^{2} term which is $-19 x^{2}$.
Multiplying out with $a=-7$ the x^{2} term is $x \times(-7 x)+(-2) \times 6 x^{2}=-7 x^{2}-12 x^{2}=-19 x^{2}$, which works!.

$$
\begin{aligned}
\Rightarrow \quad 6 x^{3}-19 x^{2}+11 x+6 & =(x-2)\left(6 x^{2}-7 x-3\right) \\
& =(x-2)(2 x-3)(3 x+1)
\end{aligned}
$$

which is now factorised completely.

Choosing a suitable factor

To choose a suitable factor we look at the coefficient of the highest power of x and the constant (the term without an x).
Example: Factorise $2 x^{3}+x^{2}-13 x+6$.
Solution: $\quad 2$ is the coefficient of x^{3} and 2 has factors of 2 and 1 .
6 is the constant and 6 has factors of $1,2,3$ and 6
so the possible linear factors of $2 x^{3}+x^{2}-13 x+6$ are
$(x \pm 1), \quad(x \pm 2), \quad(x \pm 3), \quad(x \pm 6)$
$(2 x \pm 1), \quad(2 x \pm 2), \quad(2 x \pm 3), \quad(2 x \pm 6)$
But $\quad(2 x \pm 2)=2(x \pm 1)$ and $(2 x \pm 6)=2(x \pm 3)$, so they are not new factors.

We now test the possible factors using the factor theorem until we find one that works.
Test $(x-1)$, put $x=1$ giving $2 \times 1^{3}+1^{2}-13 \times 1+6 \neq 0$
Test $(x+1)$, put $x=-1$ giving $2 \times(-1)^{3}+(-1)^{2}-13 \times(-1)+6 \neq 0$
Test $(x-2)$, put $x=2$ giving $2 \times 2^{3}+2^{2}-13 \times 2+6=16+4-26+6=$ 0
and since the result is zero $(x-2)$ is a factor.
We now divide in, as in the previous example, to give

$$
\begin{aligned}
& 2 x^{3}+x^{2}-13 x+6=(x-2)\left(2 x^{2}+5 x-3\right) \\
& =(x-2)(2 x-1)(x+3) .
\end{aligned}
$$

Cubic equations

Factorise using the factor theorem then solve.
N.B. The quadratic factor might not factorise in which case you will need to use the formula for this part.
Example: \quad Solve the equation $x^{3}-x^{2}-3 x+2=0$.
Solution: Possible factors are $(x \pm 1)$ and $(x \pm 2)$.
Put $x=1$ we have $1^{3}-1^{2}-3 \times 1+2=-1 \neq 0$
$\Rightarrow(x-1)$ is not a factor
Putting $x=2$ we have $2^{3}-2^{2}-3 \times 2+2=8-4-6+2=0$
$\Rightarrow \quad(x-2)$ is a factor
$\Rightarrow \quad x^{3}-x^{2}-3 x+2=(x-2)\left(x^{2}+x-1\right)=0$
$\Rightarrow \quad x=2$ or $x^{2}+x-1=0 \quad-\quad$ this will not factorise so we use the formula
$\Rightarrow \quad x=2$ or $x=\frac{-1 \pm \sqrt{(-1)^{2}--4 \times 1 \times 1}}{2 \times 1}=0.618$ or -1.31

2 Trigonometry

Radians

A radian is the angle subtended at the centre of a circle by an arc of length equal to the radius.

Connection between radians and degrees

$180^{\circ}=\pi^{c}$

Degrees	30	45	60	90	120	135	150	180	270	360
Radians	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$	$2 \pi / 3$	$3 \pi / 4$	$5 \pi / 6$	π	$3 \pi / 2$	2π

Arc length, area of a sector and area of a segment

Arc length $s=r \theta$ and area of sector $A=1 / 2 r^{2} \theta$.
Area of segment $=$ area sector - area of triangle $=1 / 2 r^{2} \theta-1 / 2 r^{2} \sin \theta$.

Trig functions

Basic results

$\tan A=\frac{\sin A}{\cos A} ; \quad \sin (-A)=-\sin A ; \quad \cos (-A)=\cos A ; \quad \tan (-A)=-\tan A ;$

Exact values for $\mathbf{3 0}^{\mathbf{0}}, \mathbf{4 5}^{\mathbf{0}}$ and $\mathbf{6 0}{ }^{\circ}$

From the equilateral triangle of side 2 we can read off

$$
\begin{array}{ll}
\sin 60^{\circ}=\sqrt{3} / 2 & \sin 30^{\circ}=1 / 2 \\
\cos 60^{\circ}=1 / 2 & \cos 30^{\circ}=\sqrt{3} / 2 \\
\tan 60^{\circ}=\sqrt{ } 3 & \tan 30^{\circ}=1 / \sqrt{3}
\end{array}
$$

and from the isosceles right-angled triangle with sides $1,1, \sqrt{ } 2$ we can read off
$\sin 45^{\circ}=1 / \sqrt{2}$
$\cos 45^{\circ}={ }^{1} / \sqrt{ } 2$
$\tan 45^{\circ}=1$

Graphs of trig functions

Graphs of $y=\sin n x, y=\sin (-x), y=\sin (x+n)$ etc.
You should know the shapes of these graphs
$y=\sin 3 x$ is like $y=\sin x$ but repeats itself 3 times between 0° and 360°
$y=\sin (-x)=-\sin x$ and $y=\tan (-x)=-\tan x$ are the graphs of $y=\sin x$ and $y=\tan x$ reflected in the x-axis.
$y=\cos (-x)=\cos x$ is just the graph of $y=\cos x$.
$y=\sin (x+30)$ is the graph of $y=\sin x$ translated through $\binom{-30}{0}$.

Sine \& Cosine rules and area of triangle

$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$: be careful - the sine rule always gives you two answers for each angle so if possible do not use the sine rule to find the largest angle as it might be obtuse;
or you might want both answers if it is possible to draw two different triangles from the information given.
$a^{2}=b^{2}+c^{2}-2 b c \cos A$ etc. Unique answers here!
Area of a triangle $=\frac{1}{2} a b \sin C=\frac{1}{2} b c \sin A=\frac{1}{2} a c \sin B$.

Identities

$$
\tan A=\frac{\sin A}{\cos A}
$$

Example: \quad Solve $3 \sin x=4 \cos x$.
Solution: First divide both sides by $\cos x$

$$
\begin{aligned}
& \Rightarrow \quad 3 \frac{\sin x}{\cos x}=4 \quad \Rightarrow \quad 3 \tan x=4 \quad \Rightarrow \quad \tan x=4 / 3 \\
& \Rightarrow \quad x=53.1^{\circ}, \text { or } 233.1^{\circ} . \\
& \sin ^{2} A+\cos ^{2} A=1
\end{aligned}
$$

Example: Given that $\cos A=\frac{5}{13}$ and that $270^{\circ}<A<360^{\circ}$, find $\sin A$ and $\tan A$.
Solution: We know that $\sin ^{2} A+\cos ^{2} A=1$

$$
\begin{array}{ll}
\Rightarrow & \sin ^{2} A=1-\cos ^{2} A \\
\Rightarrow & \sin ^{2} A=1-\left(\frac{5}{13}\right)^{2} \\
\Rightarrow & \sin A= \pm^{12} / 13 .
\end{array}
$$

But $270^{\circ}<A<360^{\circ}$
$\Rightarrow \quad \sin A$ is negative
$\Rightarrow \quad \sin A=-{ }^{12} / 13$.
Also $\tan A=\frac{\sin A}{\cos A}$
$\Rightarrow \tan A=\frac{-12 / 13}{5 / 13}=-12 / 5=-2.4$.

Example: Solve $2 \sin ^{2} x+\sin x-\cos ^{2} x=1$
Solution: Rewriting $\cos ^{2} x$ in terms of $\sin x$ will make life easier
so using $\sin ^{2} x+\cos ^{2} x=1$
$\Rightarrow \quad \cos ^{2} x=1-\sin ^{2} x$
$\Rightarrow \quad 2 \sin ^{2} x+\sin x-\cos ^{2} x=1$
$\Rightarrow \quad 2 \sin ^{2} x+\sin x-\left(1-\sin ^{2} x\right)=1$
$\Rightarrow \quad 3 \sin ^{2} x+\sin x-2=0$
$\Rightarrow \quad(3 \sin x-2)(\sin x+1)=0$
$\Rightarrow \quad \sin x=2 / 3$ or -1
$\Rightarrow \quad x=41.8^{\circ}, 138.9^{\circ}$, or 270°.
N.B. If asked to give answers in radians, you are allowed to work in degrees as above and then convert to radians by multiplying by $\pi / 180$
So answers in radians would be
$x=41.8103 \times \pi / 180=0.730$, or $138.1897 \times \pi / 180=2.41$, or $270 \times \pi / 180=3 \pi / 2$.

Trigonometric equations

Example: Solve $\sin (x-\pi / 4)=0.5$ for $0^{c} \leq x \leq 2 \pi^{c}$, giving your answers in radians in terms of π.
Solution: \quad First we know that $\sin 60^{\circ}=0.5$, and $60^{\circ}=\pi / 3$ radians

$$
\Rightarrow \quad x-\pi / 4=\pi / 3 \text { or } \pi-\pi / 3=2 \pi / 3 \Rightarrow \quad x=7 \pi / 12 \text { or } 11 \pi / 12 \text {. }
$$

Example: Solve $\sin 2 x=0.471$ for $0^{\circ} \leq x \leq 360^{\circ}$, giving your answers to the nearest degree.
Solution: \quad First put $X=2 x$ and find all solutions of $\sin X=0.471$ for $0^{\circ} \leq X \leq 720^{\circ}$

$$
\begin{array}{ll}
\Rightarrow & X=28.1, \quad \text { or } 180-28.1=151.9 \\
& \text { or } 28.1+360=388.1, \text { or } 151.9+360=511.9 \\
\text { i.e. } & X=28.1,151.9,388.1,511.9 \\
\Rightarrow & x=14^{\circ}, 76^{\circ}, 194^{\circ}, 256^{\circ} \text { to the nearest degree. }
\end{array}
$$

There are several examples in the book.

3 Coordinate Geometry

Mid point

The mid point of the line joining $P\left(a_{1}, b_{1}\right)$ and $Q\left(a_{2}, b_{2}\right)$ is $\left(\frac{1}{2}\left(a_{1}+a_{2}\right), \frac{1}{2}\left(b_{1}+b_{2}\right)\right)$.

Circle

Centre at the origin

Take any point, P, on a circle centre the origin and radius 5.

Suppose that P has coordinates (x, y)
Using Pythagoras’ Theorem we have

$$
x^{2}+y^{2}=5^{2} \Rightarrow x^{2}+y^{2}=25
$$

which is the equation of the circle.
and in general the equation of a circle centre $(0,0)$ and radius r is

$$
x^{2}+y^{2}=r^{2}
$$

General equation

In the circle shown the centre is $C,(a, b)$, and the radius is r.
$C Q=x-a$ and $P Q=y-b$
and, using Pythagoras

$$
\begin{array}{ll}
\Rightarrow & C Q^{2}+P Q^{2}=r^{2} \\
\Rightarrow & (x-a)^{2}+(y-b)^{2}=r^{2}
\end{array}
$$

which is the general equation of a circle.

Example: Find the centre and radius of the circle whose equation is

$$
x^{2}+y^{2}-4 x+6 y-12=0
$$

Solution: \quad First complete the square in both x and y to give

$$
\begin{aligned}
& x^{2}-4 x+4+y^{2}+6 y+9=12+4+9=25 \\
& \Rightarrow \quad(x-2)^{2}+(y+3)^{2}=5^{2}
\end{aligned}
$$

which is the equation of a circle with centre $(2,-3)$ and radius 5.

Example: Find the equation of the circle on the line joining $A,(3,5)$, and $B,(8,-7)$, as diameter.

Solution: The centre is the mid point of $A B$ is $\left(\frac{1}{2}(3+8), \frac{1}{2}(5-7)\right)=(51 / 2,-1)$ and the radius is $1 / 2 A B=1 / 2 \sqrt{(8-3)^{2}+(-7-5)^{2}}=6.5$
$\Rightarrow \quad$ equation is $(x-5.5)^{2}+(y+1)^{2}=6.5^{2}$.

Equation of tangent

Example: Find the equation of the tangent to the circle $x^{2}+2 x+y^{2}-4 y=164$ which passes through the point of the circle $(-6,14)$.

Solution: \quad First complete the square in x and in y to give

$$
(x+1)^{2}+(y-2)^{2}=169 .
$$

Next find the gradient of the radius from the centre $(-1,2)$ to the point $(-6,14)$ which is ${ }^{12} /-5$
$\Rightarrow \quad$ gradient of the tangent at that point is $5 / 12$, since the tangent is perpendicular to the radius and product of gradients of perpendicular lines is -1
$\Rightarrow \quad$ equation of the tangent is $y-14=\frac{5}{12}(x+6)$
$\Rightarrow \quad 12 y-5 x=198$.

Example: Find the intersection of the line $y=2 x+4$ with the circle $x^{2}+y^{2}=5$.
Solution: Put $y=2 x+4$ in $x^{2}+y^{2}=5$ to give $x^{2}+(2 x+4)^{2}=5$

$$
\begin{array}{ll}
\Rightarrow & x^{2}+4 x^{2}+16 x+16=5 \\
\Rightarrow & 5 x^{2}+16 x+11=0 \\
\Rightarrow & (5 x+11)(x+1)=0 \\
\Rightarrow & x=-2.2 \quad \text { or }-1 \\
\Rightarrow & y=-0.4 \quad \text { or } 2 \\
\Rightarrow & \text { line intersects circle at }(-2.2,-0.4) \text { and }(-1,2)
\end{array}
$$

If the two points of intersection are the same point then the line is a tangent.

Note. You should know that the angle in a semi-circle is a right angle and that the perpendicular from the centre to a chord bisects the chord (cuts it exactly in half) .

4 Sequences and series

Geometric series

Finite geometric series

A geometric series is a series in which each term is a constant amount times the previous term: this constant amount is called the common ratio.
The common ratio can be ≥ 1 or ≤ 1, and positive or negative.
Examples: 2, 6, 18, 54, 162, 486, with common ratio 3,
$40,20,10,5,2^{1 ⁄ 2}, 1 \frac{1}{4}, \ldots . \quad$ with common ratio $1 / 2$,
$1 / 2,-2,8,-32,128,-512, \ldots$ with common ratio -4 .

Generally a geometric series can be written as

$$
S_{n}=a+a r+a r^{2}+a r^{3}+a r^{4}+\ldots \text { up to } n \text { terms }
$$

where a is the first term and r is the common ratio.
The nth term is $u_{n}=a r^{n-1}$.
The sum of the first n terms of the above geometric series is

$$
S_{n}=a \frac{1-r^{n}}{1-r}=a \frac{r^{n}-1}{r-1} .
$$

Example: Find the $n^{\text {th }}$ term and the sum of the first 11 terms of the geometric series whose $3^{\text {rd }}$ term is 2 and whose $6^{\text {th }}$ term is -16 .
Solution: $\quad x_{6}=x_{3} \times r^{3} \quad \Rightarrow \quad-16=2 \times r^{3} \quad \Rightarrow \quad r^{3}=-8$
$\Rightarrow \quad r=-2$
Now $\quad x_{3}=x_{1} \times r^{2} \quad x_{1}=x_{3} \div r^{2}=2 \div(-2)^{2}$
$\Rightarrow \quad x_{1}=1 / 2$
$\Rightarrow \quad n^{\text {th }}$ term, $x_{n}=a r^{n-1}=1 / 2 \times(-2)^{n-1}$
and the sum of the first 11 terms is

$$
S_{11}=\frac{1}{2} \frac{(-2)^{11}-1}{-2-1}=\frac{-2049}{-6} \Rightarrow S_{11}=3411 / 2
$$

Infinite geometric series

When the common ratio is between -1 and +1 the series converges to a limit.
$S_{n}=a+a r+a r^{2}+a r^{3}+a r^{4}+\ldots$ up to n terms
and $\quad S_{n}=a \frac{1-r^{n}}{1-r}$.
Since $|r|<1, r^{n} \rightarrow 0$ as $n \rightarrow \infty$ and so
$S_{n} \rightarrow S_{\infty}=\frac{a}{1-r}$

Example: Show that the following geometric series converges to a limit and find its sum to infinity. $\quad S=16+12+9+63 / 4+\ldots$
Solution: Firstly the common ratio is $12 / 16=3 / 4$ which lies between -1 and +1 therefore the sum converges to a limit.
The sum to infinity $S_{\infty}=\frac{a}{1-r}=\frac{16}{1-3 / 4}$

$$
\Rightarrow \quad S_{\infty}=64
$$

Proof of the formula for the sum of a geometric series

You must know this proof.

$$
\begin{array}{lll}
& S_{n}=a+a r+a r^{2}+a r^{3}+\ldots a r^{n-2}+a r^{n-1}, & \text { multiply through by } r \\
\Rightarrow & r \times S_{n}=a r+a r^{2}+a r^{3}+\ldots a r^{n-2}+a r^{n-1}+a r^{n} & \text { subtract } \\
\Rightarrow & S_{n}-r \times S_{n}=a+0+0+0+\ldots 0+0 \quad-a r^{n} & \\
\Rightarrow \quad & (1-r) S_{n}=a-a r^{n}=a\left(1-r^{n}\right) & \\
\Rightarrow \quad & S_{n}=a \frac{1-r^{n}}{1-r}=a \frac{r^{n}-1}{r-1} . &
\end{array}
$$

Notice that if $-1<r<+1$ then $r^{n} \rightarrow 0$ and
$S_{n} \rightarrow S_{\infty}=\frac{a}{1-r}$.

Binomial series for positive integral index

Pascal's triangle

When using Pascal's triangle we think of the top row as row $\mathbf{0}$.

To expand $(a+b)^{6}$ we first write out all the terms of 'degree $\mathbf{6}$ ' in order of decreasing powers of a to give

$$
a^{6}+a^{5} b+a^{4} b^{2}+a^{3} b^{3}+a^{2} b^{4}+a b^{5}+b^{6}
$$

and then fill in the coefficients using row $\mathbf{6}$ of the triangle to give

$$
\begin{aligned}
& \mathbf{1} a^{6}+\mathbf{6} a^{5} b+15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+\mathbf{6} a b^{5}+\mathbf{1} b^{6} \\
= & a^{6}+6 a^{5} b+15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+b^{6}
\end{aligned}
$$

Factorials

Factorial n, written as n ! $=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1$.
So $5!=5 \times 4 \times 3 \times 2 \times 1=120$

Binomial coefficients or ${ }^{n} C_{r}$ or $\binom{n}{r}$
If we think of row 6 starting with the $0^{\text {th }}$ term we use the following notation

$0^{\text {th }}$ term	$1^{\text {st }}$ term	$2^{\text {nd }}$ term	$3^{\text {rd }}$ term	$4^{\text {th }}$ term	$5^{\text {th }}$ term	$6^{\text {th }}$ term
1	6	15	20	15	6	1
${ }^{6} C_{0}$	${ }^{6} C_{1}$	${ }^{6} C_{2}$	${ }^{6} C_{3}$	${ }^{6} C_{4}$	${ }^{6} C_{5}$	${ }^{6} C_{6}$
$\binom{6}{0}$	$\binom{6}{1}$	$\binom{6}{2}$	$\binom{6}{3}$	$\binom{6}{4}$	$\binom{6}{5}$	$\binom{6}{6}$

where the binomial coefficients ${ }^{n} C_{r}$ or $\binom{n}{r}$ are defined by

$$
{ }^{n} C_{r}=\binom{n}{r}=\frac{n!}{(n-r)!\times r!}
$$

This is particularly useful for calculating the numbers further down in Pascal's triangle e.g. The fourth term in row 15 is

$$
{ }^{15} C_{4}\binom{15}{4}=\frac{15!}{(15-4)!4!}=\frac{15!}{11!4!}=\frac{15 \times 14 \times 13 \times 12}{4 \times 3 \times 2 \times 1}=15 \times 7 \times 13=1365
$$

You may find an ${ }^{n} C_{r}$ button on your calculator.

Example: \quad Find the coefficient of x^{3} in the expansion of $(1-2 x)^{5}$.

Solution: \quad The term in x^{3} is ${ }^{5} C_{3} \times 1^{2} \times(-2 x)^{3}=10 \times(-8) x^{3}=-80 x^{3}$ so the coefficient of x^{3} is -80 .

5 Exponentials and logarithms

Graphs of exponentials and logarithms

$y=2^{x}$ is an exponential function and its inverse is the logarithm function $y=\log _{2} x$.
Remember that the graph of an inverse function is the reflection of the original graph in $y=x$.

Rules of logarithms

$\log _{a} x=y \quad \Leftrightarrow \quad x=a^{y}$
$\log _{a} x y=\log _{a} x+\log _{a} y$
$\log _{a}(x \div y)=\log _{a} x-\log _{a} y$

$$
\begin{aligned}
& \log _{a} x^{n}=n \log _{a} x \\
& \log _{a} 1=0 \\
& \log _{a} a=1
\end{aligned}
$$

Note: $\log _{10} x$ is often written as $\lg x$

Example: Find $\log _{3} 81$.
Solution: \quad Write $\log _{3} 81=y$

$$
\Rightarrow \quad 81=3^{y} \quad \Rightarrow \quad y=4 \quad \Rightarrow \quad \log _{3} 81=4 .
$$

To solve 'log' equations we can either use the rules of logarithms to end with
or

$$
\begin{aligned}
& \log _{a}=\log _{a}=\Rightarrow= \\
& \quad \log _{a}=\Rightarrow \quad \Rightarrow=a^{\text {m }}
\end{aligned}
$$

Example: \quad Solve $\quad \log _{a} 40-3 \log _{a} x=\log _{a} 5$
Solution: $\quad \log _{a} 40-3 \log _{a} x=\log _{a} 5$

$$
\begin{aligned}
& \Rightarrow \quad \log _{a} 40-\log _{a} 5=3 \log _{a} x \\
& \Rightarrow \quad \log _{a}(40 \div 5)=\log _{a} x^{3} \\
& \Rightarrow \quad \log _{a} 8=\log _{a} x^{3} \quad \Rightarrow \quad x^{3}=8 \quad \Rightarrow \quad x=2 .
\end{aligned}
$$

Example: Solve $\log _{5} x^{2}=3+1 / 2 \log _{5} x$.
Solution: $\quad \log _{5} x^{2}=3+1 / 2 \log _{5} x$

$$
\begin{array}{ll}
\Rightarrow & 2 \log _{5} x-1 / 2 \log _{5} x=3 \\
\Rightarrow & 1.5 \log _{5} x=3 \quad \Rightarrow \quad \log _{5} x=2 \\
\Rightarrow & x=5^{2}=25 .
\end{array}
$$

Changing the base of a logarithm

$$
\log _{a} b=\frac{\log _{c} b}{\log _{c} a}
$$

Example: Find $\log _{4} 29$.
Solution: $\quad \log _{4} 29=\frac{\log _{10} 29}{\log _{10} 4}=\frac{1.4624}{0.6021}=2.43$.

A particular case

$$
\log _{a} b=\frac{\log _{b} b}{\log _{b} a}=\frac{1}{\log _{b} a} \quad \text { This gives a source of exam questions. }
$$

Example: \quad Solve $\quad \log _{4} x-6 \log _{x} 4=1$
Solution: $\quad \Rightarrow \quad \log _{4} x-\frac{6}{\log _{4} x}=1 \quad \Rightarrow \quad\left(\log _{4} x\right)^{2}-\log _{4} x-6=0$

$$
\begin{aligned}
& \Rightarrow \quad\left(\log _{4} x-3\right)\left(\log _{4} x+2\right)=0 \\
& \Rightarrow \quad \log _{4} x=3 \text { or }-2 \\
& \Rightarrow \quad x=4^{3} \text { or } 4^{-2} \quad \Rightarrow \quad x=64 \text { or } \frac{1}{16} .
\end{aligned}
$$

Equations of the form $a^{x}=b$

Example: \quad Solve $5^{x}=13$
Solution: Take logs of both sides

$$
\begin{aligned}
& \Rightarrow \quad \log _{10} 5^{x}=\log _{10} 13 \\
& \Rightarrow \quad x \log _{10} 5=\log 1013 \\
\Rightarrow \quad & x=\frac{\log _{10} 13}{\log _{10} 5}=\frac{1.1139}{0.6990}=1.59 .
\end{aligned}
$$

6 Differentiation

Increasing and decreasing functions

y is an increasing function if its gradient is positive, $\frac{d y}{d x}>0$;
y is an increasing function if its gradient is negative, $\frac{d y}{d x}<0$
Example: For what values of x is $y=x^{3}-x^{2}-x+7$ an increasing function.
Solution: $\quad y=x^{3}-x^{2}-x+7$

$$
\Rightarrow \quad \frac{d y}{d x}=3 x^{2}-2 x-1
$$

For an increasing function we want values of x for which $3 x^{2}-2 x-1>0$

Find solutions of $3 x^{2}-2 x-1=0$
$\Rightarrow \quad(3 x+1)(x-1)=0$
$\Rightarrow \quad x=-1 / 3$ or 1
so graph of $3 x^{2}-2 x-1$ meets x-axis at ${ }^{-1 / 3}$ and 1 and is above x-axis for $x<-1 / 3$ or $x>1$

So $y=x^{3}-x^{2}-x+7$ is an increasing function for $x<-\frac{1}{3}$ or $x>1$.

Stationary points and local maxima and minima (turning points).

Any point where the gradient is zero is called a stationary point.

minimum
maximum

Turning points

Stationary points of inflection

Local maxima and minima are called turning points.
The gradient at a local maximum or minimum is 0 .
Therefore to find max and min
firstly - differentiate and find the values of x which give gradient, $\frac{d y}{d x}$, equal to zero:
secondly - find second derivative $\frac{d^{2} y}{d x^{2}}$ and substitute value of x found above -
second derivative positive $\quad \Rightarrow$ minimum, and second derivative negative \Rightarrow maximum:
N.B. If $\frac{d^{2} y}{d x^{2}}=0$, it does not help! In this case you will need to find the gradient just before and just after the value of x. Be careful: you might have a stationary point of inflection
thirdly - substitute x to find the value of y and give both coordinates in your answer.

Using second derivative

Example:
Find the local maxima and minima of the curve with equation $y=x^{4}+4 x^{3}-8 x^{2}-7$.
Solution:

$$
y=x^{4}+4 x^{3}-8 x^{2}-7
$$

First find $\frac{d y}{d x}=4 x^{3}+12 x^{2}-16 x$.
At maxima and minima the gradient $=\frac{d y}{d x}=0$
$\Rightarrow 4 x^{3}+12 x^{2}-16 x=0 \Rightarrow x^{3}+3 x^{2}-4 x=0 \quad \Rightarrow \quad x\left(x^{2}+3 x-4\right)=0$

$$
\Rightarrow x(x+4)(x-1)=0 \Rightarrow x=-4,0 \text { or } 1
$$

Second find $\frac{d^{2} y}{d x^{2}}=12 x^{2}+24 x-16$

$$
\begin{aligned}
& \text { When } x=-4, \quad \frac{d^{2} y}{d x^{2}}=12 \times 16-24 \times 4-16=80, \text { positive } \Rightarrow \min \text { at } x=-4 \\
& \text { When } x=0, \quad \frac{d^{2} y}{d x^{2}}=-16, \quad \text { negative, } \Rightarrow \max \text { at } x=0 \\
& \text { When } x=1, \quad \frac{d^{2} y}{d x^{2}}=12+24-16=20, \quad \text { positive, } \Rightarrow \min \text { at } x=1 .
\end{aligned}
$$

Third find y-values: when $x=-4,0$ or $1 \Rightarrow y=-135,-7$ or -10
\Rightarrow Maximum at $(0,-7)$ and Minimum at $(-4,-135)$ and $(1,-10)$.
N.B. If $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$, it does not help! You can have any of max, min or stationary point of inflection.

Using gradients before and after

Example: \quad Find the stationary points of $y=3 x^{4}-8 x^{3}+6 x^{2}+7$.
Solution: $\quad y=3 x^{4}-8 x^{3}+6 x^{2}+7$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d y}{d x}=12 x^{3}-24 x^{2}+12 x=0 \text { for stationary points } \\
& \Rightarrow \quad x\left(x^{2}-2 x+1\right)=0 \quad \Rightarrow \quad x(x-1)^{2}=0 \quad \Rightarrow \quad x=0 \text { or } 1 . \\
& \frac{d^{2} y}{d x^{2}}=36 x^{2}-48 x+12
\end{aligned}
$$

which is 12 (positive) when $x=0 \Rightarrow$ minimum at (0,7)
and which is 0 when $x=1$, so we must look at gradients before and after.
$\left.\begin{array}{llll}x & = & 0.9 & 1\end{array}\right] 1.19+0.132$
\Rightarrow stationary point of inflection at $(1,2)$
N.B. We could have max, min or stationary point of inflection when the second derivative is zero, so we must look at gradients before and after.

Maximum and minimum problems

Example:

A manufacturer of cans for baked beans wishes to use as little metal as possible in the manufacture of these cans. The cans must have a volume of $500 \mathrm{~cm}^{3}$: how should he design the cans?

Solution:

We need to find the radius and height needed to make cans of volume $500 \mathrm{~cm}^{3}$ using the minimum possible amount of metal.

Suppose that the radius is $x \mathrm{~cm}$ and that the height is $h \mathrm{~cm}$.
The area of top and bottom together is $2 \times \pi x^{2} \mathrm{~cm}^{2}$ and the area of the curved surface is $2 \pi x h \mathrm{~cm}^{2}$
\Rightarrow the total surface area $\mathrm{A}=2 \pi x^{2}+2 \pi x h \mathrm{~cm}^{2}$.
We have a problem here: A is a function not only of x, but also of h.

But we know that the volume is $500 \mathrm{~cm}^{3}$ and that the volume can also be written as $\pi x^{2} h \mathrm{~cm}^{3}$

$$
\Rightarrow \quad \pi x^{2} h=500 \Rightarrow h=\frac{500}{\pi x^{2}}
$$

and so (I) can be written $\mathrm{A}=2 \pi x^{2}+2 \pi x \times \frac{500}{\pi \mathrm{x}^{2}}$
$\Rightarrow \quad \mathrm{A}=2 \pi x^{2}+\frac{1000}{\mathrm{x}}=2 \pi x^{2}+1000 x^{-1}$
$\Rightarrow \quad \frac{\mathrm{dA}}{\mathrm{d} x}=4 \pi x-1000 x^{-2}=4 \pi x-\frac{1000}{x^{2}}$.
For stationary values of A , the area, $\frac{\mathrm{dA}}{\mathrm{d} x}=0 \Rightarrow 4 \pi x=\frac{1000}{x^{2}}$
$\Rightarrow 4 \pi x^{3}=1000 \quad \Rightarrow \quad x^{3}=\frac{1000}{4 \pi}=79.57747155 \quad \Rightarrow \quad \mathrm{x}=4.301270069$
$\Rightarrow \quad x=4.30$ to 3 S.F. $\quad \Rightarrow \quad h=\frac{500}{\pi x^{2}}=8.60$
We do not know whether this value gives a maximum or a minimum value of A or a stationary point of inflection
so we must find $\frac{\mathrm{d}^{2} \mathrm{~A}}{\mathrm{dx}^{2}}=4 \pi+2000 \mathrm{x}^{-3}=4 \pi+\frac{2000}{\mathrm{x}^{3}}$.
Clearly this is positive when $x=4.30$ and thus this gives a minimum of A
$\Rightarrow \quad$ minimum area of metal is $349 \mathrm{~cm}^{2}$
when the radius is 4.30 cm and the height is 8.60 cm .

7 Integration

Definite integrals

When limits of integration are given.
Example: Find $\int_{1}^{3} 6 x^{2}-8 x+1 d x$
Solution: $\quad \int_{1}^{3} 6 x^{2}-8 x+1 d x=\left[2 x^{3}-4 x^{2}+x\right]_{1}^{3} \quad$ no need for $+C$ as it cancels out

$$
\begin{aligned}
& =\left[2 \times 3^{3}-4 \times 3^{2}+3\right]-\left[2 \times 1^{3}-4 \times 1^{2}+1\right] \quad \text { put top limit in first } \\
& =[21]-[-1]=22 .
\end{aligned}
$$

Area under curve

The integral is the area between the curve and the x-axis, but areas above the axis are positive and areas below the axis are negative.
Example: Find the area between the x-axis, $x=0, x=2$ and $y=x^{2}-4 x$.

Solution:

$$
\begin{aligned}
& \int_{0}^{2} x^{2}-4 x d x \\
& \left.=\left[\frac{x^{3}}{3}-2 x^{2}\right]_{0}^{2}=\left[\frac{8}{3}-8\right]\right]-[0-0] \\
& =\frac{-16}{3} \text { which is negative since the area is }
\end{aligned}
$$

$$
\text { below the } x \text {-axis }
$$

$$
\Rightarrow \quad \text { required area is } \frac{+16}{3}
$$

Example: Find the area between the x-axis, $x=1, x=4$ and $y=3 x-x^{2}$.
Solution: First sketch the curve to see which bits are above (positive) and which bits are below (negative).

$$
\begin{aligned}
& y=3 x-x^{2} \\
&=x(3-x) \\
& \Rightarrow \quad \text { meets } x \text {-axis at } 0 \text { and } 3
\end{aligned}
$$

so graph is as shown.
Area A_{1}, between 1 and 3 , is above axis: area A_{2}, between 3 and 4 , is below axis so we must find these areas separately.

$$
\begin{aligned}
\mathrm{A}_{1} & =\int_{1}^{3} 3 x-x^{2} d x \\
& =\left[\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{1}^{3}=[4.5]-\left[1 \frac{1}{6}\right]=3^{1} / 3
\end{aligned} \text { and } \int_{3}^{4} 3 x-x^{2} d x=\left[\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{3}^{4}=\left[2 \frac{2}{3}\right]-[4.5]=-1 \frac{5}{6} .
$$

and so area A_{2} (areas are positive) $=+15 / 6$
so total area $=A_{1}+A_{2}=3 \frac{1}{3}+1 \frac{5}{6}=5 \frac{1}{6}$.
Note that $\int_{1}^{4} 3 x-x^{2} d x\left[\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{1}^{4}=\left[2 \frac{2}{3}\right]-\left[1 \frac{1}{6}\right]=1 \frac{1}{2}$
which is $\mathrm{A}_{1}-\mathrm{A}_{2}=3^{1} / 3-1^{5} / 6=1^{1} / 2$.

Numerical integration: the trapezium rule

Many functions can not be 'anti-differentiated' and the trapezium rule is a way of estimating the area under the curve.

Divide the area under $y=f(x)$ into n strips, each of width h.

Join the top of each strip with a straight line to form a trapezium.

Then the area under the curve \approx sum of the areas of the trapezia

$\Rightarrow \quad \int_{a}^{b} f(x) d x \approx \frac{1}{2} h\left(y_{0}+y_{1}\right)+\frac{1}{2} h\left(y_{1}+y_{2}\right)+\frac{1}{2} h\left(y_{2}+y_{3}\right)+\ldots+\frac{1}{2} h\left(y_{n-1}+y_{n}\right)$
$\Rightarrow \quad \int_{a}^{b} f(x) d x \approx \frac{1}{2} h\left(y_{0}+y_{1}+y_{1}+y_{2}+y_{2}+y_{3}+\ldots+y_{n-1}+y_{n}\right)$
$\Rightarrow \quad \int_{a}^{b} f(x) d x \approx \frac{1}{2} h\left(y_{0}+y_{n}+2\left(y_{1}+y_{2}+y_{3}+\ldots+y_{n-1}\right)\right)$
$\Rightarrow \quad$ area under curve $\approx 1 / 2$ width of each strip \times ('ends' $+2 \times$ 'middles').

Index

Area of triangle, 8
Binomial series, 14
binomial coefficients, 14
${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$ or $\binom{n}{r}, 14$
Circle
Centre at origin, 10
General equation, 10
Tangent equation, 11
Cosine rule, 8
Cubic equations, 6
Differentiation, 17
Equations
$\mathrm{a}^{\mathrm{x}}=\mathrm{b}, 17$
Exponential, 15
Factor theorem, 4
Factorials, 14
Factorising
examples, 3
Functions
decreasing, 17
increasing, 17
Integrals
area under curve, 21
definite, 21
Logarithm, 15
change of base, 16
rules of logs, 15

Mid point, 10
Pascal’s triangle, 14
Polynomials, 3
long division, 3
Radians
arc length, 6
area of sector, 6
area of segment, 6
connection between radians and degrees, 6
Remainder theorem, 3
Series
Geometric, finite, 12
Geometric, infinite, 12
Geometric, proof of sum, 13
Sine rule, 8
Stationary points
gradients before and after, 19
maxima and minima, 18
maximum and minimum problems, 20
second derivative, 18
Trapezium rule, 22
Trig equations, 9
Trig functions
basic results, 6
graphs, 7
identities, 8
Turning points, 18

