Core Maths C2

Revision Notes

November 2012

Core Maths C2

1	Algebra	3
	<i>Polynomials</i> : +, −, ×, ÷	:
	Factorising	
	Long division	
	Remainder theorem	
	Factor theorem	
	Choosing a suitable factor	
	Cubic equations.	
	Cuote equations	••••
2	Trigonometry	
	•	
	Radians.	
	Connection between radians and degrees	
	Trig functions	
	Basic results	
	Exact values for 30°, 45° and 60°	
	Graphs of trig functions	
	Graphs of $y = \sin nx$, $y = \sin(-x)$, $y = \sin(x + n)$ etc	
	Sine & Cosine rules and area of triangle	
	Identities	
	Trigonometric equations	
	Trigonometric equations	
3	Coordinate Geometry	10
	Mid point	
	•	
	Contro at the origin	
	Centre at the origin	
	Equation of tangent	
	1	
4	Sequences and series	12
	Geometric series	13
	Finite geometric series.	
	Infinite geometric series	
	Proof of the formula for the sum of a geometric series	
	Binomial series for positive integral index	
	Pascal's triangle	
	Factorials	14
	n = n	
	Binomial coefficients or ${}^{n}C_{r}$ or $\binom{n}{r}$	14
	(')	
5	Exponentials and logarithms	14
J		
	Graphs of exponentials and logarithms	
	Rules of logarithms	
	Changing the base of a logarithm	16
	Equations of the form $a^x = b$	

6 Differentiation	••••••	17
Increasing and decreasing functions		17
Stationary points and local maxima a	nd minima (turning points)	18
Using second derivative		18
Using gradients before and after		19
Maximum and minimum problems		20
7 Integration		21
Definite integrals		21
Area under curve		21
Numerical integration: the trapezium	rule	22
Index		23

1 Algebra

Polynomials: +, -, \times , \div .

A polynomial is an expression of the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

where all the powers of the variable, x, are positive integers or 0.

 $+, -, \times$ of polynomials are easy, \div must be done by long division.

Factorising

General examples of factorising:

$$2ab + 6ac^2 = 2a(b + 3c^2)$$

$$x^2 - 5x + 6 = (x - 2)(x - 3)$$

$$x^2 - 6x = x(x - 6)$$

$$6x^2 - 11x - 10 = (3x + 2)(2x - 5)$$

Standard results:

$$x^2 - y^2 = (x - y)(x + y),$$

difference of two squares

$$(x+y)^2 = x^2 + 2xy + y^2,$$

$$(x-y)^2 = x^2 - 2xy + y^2$$

Long division

See examples in book

Remainder theorem

If 627 is divided by 6 the quotient is 104 and the remainder is 3.

This can be written as $627 = 6 \times 104 + 3$.

In the same way, if a polynomial

 $P(x) = a_0 + a_1 x + a_2 x^2 + ... a_n x^n$ is divided by (cx + d) to give a quotient, Q(x) with a remainder r, then r will be a constant (since the divisor is of degree one) and we can write

$$P(x) = (cx + d) \times Q(x) + r$$

If we now choose the value of x which makes $(cx + d) = 0 \Rightarrow x = {}^{-d}/_{c}$

then we have $P(-d/c) = 0 \times Q(x) + r$

$$\Rightarrow P(-d/c) = r.$$

Theorem: If we substitute x = -d/c in the polynomial we obtain the remainder that we would have after dividing the polynomial by (cx + d).

Example: The remainder when $P(x) = 4x^3 - 2x^2 + ax - 4$ is divided by (2x - 3) is 7. Find a.

Solution: Choose the value of x which makes (2x - 3) = 0, i.e. $x = \frac{3}{2}$.

Then the remainder is $P(\frac{3}{2}) = 4 \times (\frac{3}{2})^3 - 2 \times (\frac{3}{2})^2 + a \times (\frac{3}{2}) - 4 = 7$

$$\Rightarrow$$
 $\frac{27}{2} - \frac{9}{2} + a \times (\frac{3}{2}) - 4 = 7 \Rightarrow 5 + a \times (\frac{3}{2}) = 7$

$$\Rightarrow a = \frac{4}{3}$$
.

You may be given a polynomial with two unknown letters, a and b. You will also be given two pieces of information to let you form two simultaneous equations in a and b.

Factor theorem

Theorem: If, in the remainder theorem, r = 0 then (cx + d) is a factor of P(x)

$$\Rightarrow$$
 $P(-\frac{d}{c})=0$ \Leftrightarrow $(cx+d)$ is a factor of $P(x)$.

Example: A quadratic equation has solutions (roots) $x = ^{-1}/_2$ and x = 3. Find the quadratic equation in the form $ax^2 + bx + c = 0$

Solution: The equation has roots $x = -\frac{1}{2}$ and x = 3

 \Rightarrow it must have factors (2x + 1) and (x - 3) by the factor theorem

 \Rightarrow the equation is (2x+1)(x-3) = 0

$$\Rightarrow 2x^2 - 5x - 3 = 0.$$

Example: Show that (x-2) is a factor of $P(x) = 6x^3 - 19x^2 + 11x + 6$ and hence factorise the expression completely.

Solution: Choose the value of x which makes (x-2) = 0, i.e. x = 2

$$\Rightarrow$$
 remainder = $P(2) = 6 \times 8 - 19 \times 4 + 11 \times 2 + 6 = 48 - 76 + 22 + 6 = 0$

$$\Rightarrow$$
 $(x-2)$ is a factor by the factor theorem.

We have a cubic and so we can see that the other factor must be a quadratic of the form

$$(6x^2 + ax - 3)$$
 and we can write

$$6x^3 - 19x^2 + 11x + 6 = (x - 2)(6x^2 + ax - 3)$$

Multiplying out we see that the $6x^3$ and +6 terms are correct.

The x term is 11x

Multiplying out the x term comes from $x \times -3 + -2 \times ax$ which must come to 11x

$$\Rightarrow$$
 $a = -7$.

We must now check the x^2 term which is $-19x^2$.

Multiplying out with a = -7

the x^2 term is $x \times (-7x) + (-2) \times 6x^2 = -7x^2 - 12x^2 = -19x^2$, which works!

$$\Rightarrow 6x^3 - 19x^2 + 11x + 6 = (x - 2)(6x^2 - 7x - 3)$$
$$= (x - 2)(2x - 3)(3x + 1)$$

which is now factorised completely.

Choosing a suitable factor

To choose a suitable factor we look at the coefficient of the highest power of x and the constant (the term without an x).

Example: Factorise $2x^3 + x^2 - 13x + 6$.

Solution: 2 is the coefficient of x^3 and 2 has factors of 2 and 1.

6 is the constant and 6 has factors of 1, 2, 3 and 6

so the possible linear factors of $2x^3 + x^2 - 13x + 6$ are

$$(x \pm 1),$$
 $(x \pm 2),$ $(x \pm 3),$ $(x \pm 6)$

$$(2x \pm 1),$$
 $(2x \pm 2),$ $(2x \pm 3),$ $(2x \pm 6)$

But $(2x \pm 2) = 2(x \pm 1)$ and $(2x \pm 6) = 2(x \pm 3)$, so they are not new factors.

We now test the possible factors using the factor theorem until we find one that works.

Test
$$(x-1)$$
, put $x = 1$ giving $2 \times 1^3 + 1^2 - 13 \times 1 + 6 \neq 0$

Test
$$(x+1)$$
, put $x = -1$ giving $2 \times (-1)^3 + (-1)^2 - 13 \times (-1) + 6 \neq 0$

Test
$$(x-2)$$
, put $x = 2$ giving $2 \times 2^3 + 2^2 - 13 \times 2 + 6 = 16 + 4 - 26 + 6 = 0$

and since the result is zero (x-2) is a factor.

We now divide in, as in the previous example, to give

$$2x^3 + x^2 - 13x + 6 = (x - 2)(2x^2 + 5x - 3)$$
$$= (x - 2)(2x - 1)(x + 3).$$

C2 14/04/2013 SDB

5

Cubic equations

Factorise using the factor theorem then solve.

 ${\bf N.B.}$ The quadratic factor might not factorise in which case you will need to use the formula for this part.

Example: Solve the equation $x^3 - x^2 - 3x + 2 = 0$.

Solution: Possible factors are $(x \pm 1)$ and $(x \pm 2)$.

Put x = 1 we have $1^3 - 1^2 - 3 \times 1 + 2 = -1 \neq 0$

 \Rightarrow (x-1) is **not** a factor

Putting x = 2 we have $2^3 - 2^2 - 3 \times 2 + 2 = 8 - 4 - 6 + 2 = 0$

 \Rightarrow (x-2) is a factor

 \Rightarrow $x^3 - x^2 - 3x + 2 = (x - 2)(x^2 + x - 1) = 0$

 \Rightarrow x = 2 or $x^2 + x - 1 = 0$ – this will not factorise so we use the formula

 \Rightarrow x = 2 or $x = \frac{-1 \pm \sqrt{(-1)^2 - -4 \times 1 \times 1}}{2 \times 1} = 0.618$ or -1.31

2 Trigonometry

Radians

A radian is the angle subtended at the centre of a circle by an arc of length equal to the radius.

Connection between radians and degrees

 $180^{\circ} = \pi^{c}$

Degrees 30 45 60 90 120 135 150 180 270 360

Radians $\pi/_{6}$ $\pi/_{4}$ $\pi/_{3}$ $\pi/_{2}$ $2\pi/_{3}$ $3\pi/_{4}$ $5\pi/_{6}$ π $3\pi/_{2}$ 2π

Arc length, area of a sector and area of a segment

Arc length $s = r\theta$ and area of sector $A = \frac{1}{2}r^2\theta$.

Area of segment = area sector – area of triangle = $\frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin\theta$.

Trig functions

Basic results

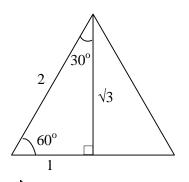
$$\tan A = \frac{\sin A}{\cos A}$$
; $\sin(-A) = -\sin A$; $\cos(-A) = \cos A$; $\tan(-A) = -\tan A$;

Exact values for 30°, 45° and 60°

From the equilateral triangle of side 2 we can read off

$$\sin 60^{\circ} = \sqrt[4]{2}$$
 $\sin 30^{\circ} = \sqrt[4]{2}$
 $\cos 60^{\circ} = \sqrt[4]{2}$ $\cos 30^{\circ} = \sqrt[4]{2}$

$$\tan 60^{\circ} = \sqrt{3}$$
 $\tan 30^{\circ} = \frac{1}{\sqrt{3}}$

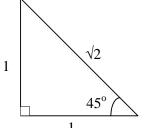


and from the isosceles right–angled triangle with sides 1, 1, $\sqrt{2}$ we can read off

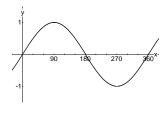
$$\sin 45^0 = {}^1/_{\sqrt{2}}$$

$$cos \, 45^o \ = \ ^1\!/_{\sqrt{2}}$$

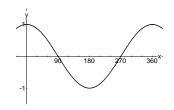
$$\tan 45^{\circ} = 1$$



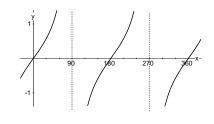
Graphs of trig functions



 $y = \sin x$



$$y = \cos x$$



 $y = \tan x$

Graphs of $y = \sin nx$, $y = \sin(-x)$, $y = \sin(x + n)$ etc.

You should know the shapes of these graphs

 $y = \sin 3x$ is like $y = \sin x$ but repeats itself 3 times between 0° and 360°

 $y = \sin(-x) = -\sin x$ and $y = \tan(-x) = -\tan x$ are the graphs of $y = \sin x$ and $y = \tan x$ reflected in the x-axis.

 $y = \cos(-x) = \cos x$ is just the graph of $y = \cos x$.

 $y = \sin(x + 30)$ is the graph of $y = \sin x$ translated through $\begin{pmatrix} -30 \\ 0 \end{pmatrix}$.

Sine & Cosine rules and area of triangle

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
:

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$: **be careful** – the sine rule always gives you two answers for each

angle so if possible do not use the sine rule to find the largest angle as it might be obtuse;

or you might want both answers if it is possible to draw two different triangles from the information given.

$$a^2 = b^2 + c^2 - 2bc \cos A$$
 etc. Unique answers here!

Area of a triangle =
$$\frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B$$
.

Identities

$$\tan A = \frac{\sin A}{\cos A}$$

Solve $3 \sin x = 4 \cos x$. Example:

Solution: First divide both sides by $\cos x$

$$\Rightarrow 3\frac{\sin x}{\cos x} = 4 \Rightarrow 3\tan x = 4 \Rightarrow \tan x = \frac{4}{3}$$

$$\Rightarrow$$
 $x = 53.1^{\circ}$, or 233.1°.

$$\sin^2\!A + \cos^2\!A = 1$$

Given that $\cos A = \frac{5}{13}$ and that $270^{\circ} < A < 360^{\circ}$, find $\sin A$ and $\tan A$. Example:

We know that $\sin^2 A + \cos^2 A = 1$ Solution:

$$\Rightarrow \sin^2 A = 1 - \cos^2 A$$

$$\Rightarrow \sin^2 A = 1 - \left(\frac{5}{13}\right)^2$$

$$\Rightarrow \qquad \sin A = \pm^{12}/_{13.}$$

But
$$270^{\circ} < A < 360^{\circ}$$

$$\Rightarrow$$
 sin A is negative

$$\Rightarrow \qquad \sin A = -\frac{12}{13}.$$

Also
$$\tan A = \frac{\sin A}{\cos A}$$

8

$$\Rightarrow \tan A = \frac{-12/13}{5/13} = -12/5 = -2.4.$$

Example: Solve $2 \sin^2 x + \sin x - \cos^2 x = 1$

Solution: Rewriting $\cos^2 x$ in terms of $\sin x$ will make life easier

so using $\sin^2 x + \cos^2 x = 1$

$$\Rightarrow \cos^2 x = 1 - \sin^2 x$$

$$\Rightarrow$$
 $2 \sin^2 x + \sin x - \cos^2 x = 1$

$$\Rightarrow 2\sin^2 x + \sin x - (1 - \sin^2 x) = 1$$

$$\Rightarrow$$
 $3 \sin^2 x + \sin x - 2 = 0$

$$\Rightarrow (3 \sin x - 2)(\sin x + 1) = 0$$

$$\Rightarrow$$
 $\sin x = \frac{2}{3}$ or -1

$$\Rightarrow$$
 $x = 41.8^{\circ}, 138.9^{\circ}, \text{ or } 270^{\circ}.$

N.B. If asked to give answers in radians, you are allowed to work in degrees as above and then convert to radians by multiplying by $\frac{\pi}{180}$

So answers in radians would be

$$x = 41.8103 \times \frac{\pi}{180} = 0.730$$
, or $138.1897 \times \frac{\pi}{180} = 2.41$, or $270 \times \frac{\pi}{180} = \frac{3\pi}{2}$.

Trigonometric equations

Example: Solve $\sin (x - \pi/4) = 0.5$ for $0^c \le x \le 2\pi^c$, giving your answers in radians in terms of π .

Solution: First we know that $\sin 60^{\circ} = 0.5$, and $60^{\circ} = \frac{\pi}{3}$ radians

$$\Rightarrow$$
 $x - \pi/4 = \pi/3 \text{ or } \pi - \pi/3 = 2\pi/3 \Rightarrow x = 7\pi/12 \text{ or } 11\pi/12.$

Example: Solve $\sin 2x = 0.471$ for $0^{\circ} \le x \le 360^{\circ}$, giving your answers to the nearest degree.

Solution: First put X = 2x and find **all** solutions of $\sin X = 0.471$ for $0^{\circ} \le X \le 720^{\circ}$

$$\Rightarrow X = 28.1,$$

or
$$180 - 28.1 = 151.9$$

or
$$28.1 + 360 = 388.1$$
, or $151.9 + 360 = 511.9$

i.e.
$$X = 28.1, 151.9, 388.1, 511.9$$

$$\Rightarrow$$
 $x = 14^{\circ}, 76^{\circ}, 194^{\circ}, 256^{\circ}$ to the nearest degree.

There are several examples in the book.

3 Coordinate Geometry

Mid point

The mid point of the line joining $P(a_1, b_1)$ and $Q(a_2, b_2)$ is $\left(\frac{1}{2}(a_1 + a_2), \frac{1}{2}(b_1 + b_2)\right)$.

Circle

Centre at the origin

Take any point, P, on a circle centre the origin and radius 5.

Suppose that P has coordinates (x, y)

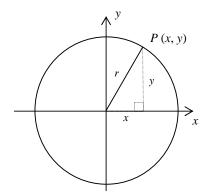
Using Pythagoras' Theorem we have

$$x^2 + y^2 = 5^2$$
 \Rightarrow $x^2 + y^2 = 25$

which is the equation of the circle.

and in general the equation of a circle centre (0, 0) and radius r is

$$x^2 + y^2 = r^2.$$



General equation

In the circle shown the centre is C, (a, b), and the radius is r.

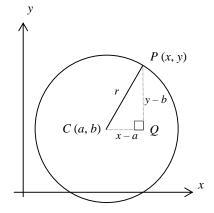
$$CQ = x - a$$
 and $PQ = y - b$

and, using Pythagoras

$$\Rightarrow$$
 $CQ^2 + PQ^2 = r^2$

$$\Rightarrow (x-a)^2 + (y-b)^2 = r^2,$$

which is the general equation of a circle.



Example: Find the centre and radius of the circle whose equation is $x^2 + y^2 - 4x + 6y - 12 = 0$.

Solution: First complete the square in both x and y to give

$$x^2 - 4x + 4 + y^2 + 6y + 9 = 12 + 4 + 9 = 25$$

$$\Rightarrow$$
 $(x-2)^2 + (y+3)^2 = 5^2$

which is the equation of a circle with centre (2, -3) and radius 5.

Example: Find the equation of the circle on the line joining A, (3, 5), and B, (8, -7), as diameter.

Solution: The centre is the mid point of
$$AB$$
 is $(\frac{1}{2}(3+8), \frac{1}{2}(5-7)) = (5\frac{1}{2}, -1)$ and the radius is $\frac{1}{2}AB = \frac{1}{2}\sqrt{(8-3)^2 + (-7-5)^2} = 6.5$
 \Rightarrow equation is $(x-5.5)^2 + (y+1)^2 = 6.5^2$.

Equation of tangent

Example: Find the equation of the tangent to the circle $x^2 + 2x + y^2 - 4y = 164$ which passes through the point of the circle (-6, 14).

Solution: First complete the square in x and in y to give

$$(x+1)^2 + (y-2)^2 = 169.$$

Next find the gradient of the radius from the centre (-1, 2) to the point (-6, 14) which is $^{12}/_{-5}$

 \Rightarrow gradient of the tangent at that point is $^5/_{12}$, since the tangent is perpendicular to the radius and product of gradients of perpendicular lines is -1

 \Rightarrow equation of the tangent is $y - 14 = \frac{5}{12}(x + 6)$

$$\Rightarrow 12y - 5x = 198.$$

Example: Find the intersection of the line y = 2x + 4 with the circle $x^2 + y^2 = 5$.

Solution: Put y = 2x + 4 in $x^2 + y^2 = 5$ to give $x^2 + (2x + 4)^2 = 5$

$$\Rightarrow \qquad x^2 + 4x^2 + 16x + 16 = 5$$

$$\Rightarrow 5x^2 + 16x + 11 = 0$$

$$\Rightarrow (5x+11)(x+1)=0$$

$$\Rightarrow$$
 $x = -2.2$ or -1

$$\Rightarrow$$
 $y = -0.4$ or 2

 \Rightarrow line intersects circle at (-2.2, -0.4) and (-1, 2)

If the two points of intersection are the same point then the line is a *tangent*.

Note. You should know that the angle in a semi-circle is a right angle and that the perpendicular from the centre to a chord bisects the chord (cuts it exactly in half).

C2 14/04/2013 SDB

4 Sequences and series

Geometric series

Finite geometric series

A *geometric series* is a series in which each term is a constant amount times the previous term: this *constant amount* is called the *common ratio*.

The common ratio can be ≥ 1 or ≤ 1 , and positive or negative.

Examples: 2, 6, 18, 54, 162, 486, with common ratio 3, 40, 20, 10, 5, 2½, 1¼, with common ratio ½, ½, -2, 8, -32, 128, -512, . . . with common ratio -4.

Generally a geometric series can be written as

$$S_n = a + ar + ar^2 + ar^3 + ar^4 + \dots$$
 up to *n* terms

where a is the first term and r is the common ratio.

The *n*th term is $u_n = ar^{n-1}$.

The sum of the first n terms of the above geometric series is

$$S_n = a \frac{1-r^n}{1-r} = a \frac{r^n-1}{r-1}.$$

Example: Find the n^{th} term and the sum of the first 11 terms of the geometric series whose 3^{rd} term is 2 and whose 6^{th} term is -16.

Solution: $x_6 = x_3 \times r^3 \implies -16 = 2 \times r^3 \implies r^3 = -8$ $\Rightarrow r = -2$ Now $x_3 = x_1 \times r^2 \qquad x_1 = x_3 \div r^2 = 2 \div (-2)^2$ $\Rightarrow x_1 = \frac{1}{2}$ $\Rightarrow n^{\text{th}} \text{ term, } x_n = ar^{n-1} = \frac{1}{2} \times (-2)^{n-1}$

and the sum of the first 11 terms is

$$S_{11} = \frac{1}{2} \frac{(-2)^{11} - 1}{-2 - 1} = \frac{-2049}{-6} \implies S_{11} = 341 \frac{1}{2}$$

Infinite geometric series

When the common ratio is between -1 and +1 the series converges to a limit.

$$S_n = a + ar + ar^2 + ar^3 + ar^4 + \dots$$
 up to *n* terms

and
$$S_n = a \frac{1-r^n}{1-r}$$
.

Since |r| < 1, $r^n \to 0$ as $n \to \infty$ and so

$$S_n \to S_\infty = \frac{a}{1-r}$$

Example: Show that the following geometric series converges to a limit and find its sum to infinity. $S = 16 + 12 + 9 + 6 \frac{3}{4} + \dots$

Solution: Firstly the common ratio is $^{12}/_{16} = \frac{3}{4}$ which lies between -1 and +1 therefore the sum converges to a limit.

The sum to infinity
$$S_{\infty} = \frac{a}{1-r} = \frac{16}{1-\frac{3}{4}}$$

$$\Rightarrow$$
 $S_{\infty} = 64$

Proof of the formula for the sum of a geometric series

You **must** know this proof.

$$S_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-2} + ar^{n-1},$$
 $r \times S_n = ar + ar^2 + ar^3 + \dots + ar^{n-2} + ar^{n-1} + ar^n$ s

multiply through by r

subtract

$$\Rightarrow S_n - r \times S_n = a + 0 + 0 + 0 + \dots + 0 - ar^n$$

$$\Rightarrow (1-r) S_n = a - ar^n = a(1-r^n)$$

$$\Rightarrow S_n = a \frac{1-r^n}{1-r} = a \frac{r^n-1}{r-1}.$$

Notice that if -1 < r < +1 then $r^n \to 0$ and

$$S_n \to S_\infty = \frac{a}{1-r}$$
.

Binomial series for positive integral index

Pascal's triangle

When using Pascal's triangle we think of the top row as **row 0**.

To expand $(a+b)^6$ we first write out all the terms of 'degree 6' in order of decreasing powers of a to give

$$a^{6} + a^{5}b + a^{4}b^{2} + a^{3}b^{3} + a^{2}b^{4} + ab^{5} + b^{6}$$

and then fill in the coefficients using row 6 of the triangle to give

$$\mathbf{1}a^{6} + \mathbf{6}a^{5}b + \mathbf{15}a^{4}b^{2} + \mathbf{20}a^{3}b^{3} + \mathbf{15}a^{2}b^{4} + \mathbf{6}ab^{5} + \mathbf{1}b^{6}$$

$$= a^{6} + 6a^{5}b + 15a^{4}b^{2} + 20a^{3}b^{3} + 15a^{2}b^{4} + 6ab^{5} + b^{6}$$

Factorials

Factorial n, written as
$$n! = n \times (n-1) \times (n-2) \times ... \times 3 \times 2 \times 1$$
.

So
$$5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$$

Binomial coefficients or ${}^{n}C_{r}$ or ${n \choose r}$

If we think of row 6 starting with the 0^{th} term we use the following notation

0 th term	1 st term	2 nd term	3 rd term	4 th term	5 th term	6 th term
1	6	15	20	15	6	1
${}^{6}C_{0}$	${}^{6}C_{1}$	$^{6}C_{2}$	$^{6}C_{3}$	$^{6}C_{4}$	${}^{6}C_{5}$	${}^{6}C_{6}$
$\begin{pmatrix} 6 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 6 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 6 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 6 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 6 \\ 4 \end{pmatrix}$	$\begin{pmatrix} 6 \\ 5 \end{pmatrix}$	$\begin{pmatrix} 6 \\ 6 \end{pmatrix}$

where the *binomial coefficients* ${}^{n}C_{r}$ or $\binom{n}{r}$ are defined by

$${}^{n}C_{r} = {n \choose r} = \frac{n!}{(n-r)! \times r!}$$

This is particularly useful for calculating the numbers further down in Pascal's triangle e.g. The fourth term in row 15 is

$${}^{15}C_4 \begin{pmatrix} 15 \\ 4 \end{pmatrix} = \frac{15!}{(15-4)!4!} = \frac{15!}{11!4!} = \frac{15 \times 14 \times 13 \times 12}{4 \times 3 \times 2 \times 1} = 15 \times 7 \times 13 = 1365$$

You may find an ${}^{n}C_{r}$ button on your calculator.

Example: Find the coefficient of x^3 in the expansion of $(1-2x)^5$.

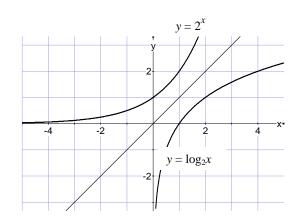
Solution: The term in x^3 is ${}^5C_3 \times 1^2 \times (-2x)^3 = 10 \times (-8)x^3 = -80x^3$ so the coefficient of x^3 is -80.

5 Exponentials and logarithms

Graphs of exponentials and logarithms

 $y = 2^x$ is an *exponential* function and its inverse is the *logarithm* function $y = \log_2 x$.

Remember that the graph of an inverse function is the reflection of the original graph in y = x.



Rules of logarithms

$$\log_a x = y \quad \Leftrightarrow \quad x = a^y$$

$$\log_a xy = \log_a x + \log_a y$$

$$\log_a(x \div y) = \log_a x - \log_a y$$

$$\log_a x^n = n \log_a x$$

$$\log_a 1 = 0$$

$$\log_a a = 1$$

Note: $\log_{10} x$ is often written as $\lg x$

Example: Find log 3 81.

Solution: Write $\log_3 81 = y$

$$\Rightarrow 81 = 3^{y} \qquad \Rightarrow y = 4 \qquad \Rightarrow \log_3 81 = 4.$$

To solve 'log' equations we can either use the rules of logarithms to end with

$$\log_a \mathcal{L} = \log_a \mathcal{L} \implies \mathcal{L} = \mathcal{L}$$

or
$$\log_a \mathbf{w} = \mathbf{w} \Rightarrow \mathbf{w} = a^{\mathbf{w}}$$

Example: Solve
$$\log_a 40 - 3 \log_a x = \log_a 5$$

Solution:
$$\log_a 40 - 3 \log_a x = \log_a 5$$

$$\Rightarrow \log_a 40 - \log_a 5 = 3 \log_a x$$

$$\Rightarrow \log_a (40 \div 5) = \log_a x^3$$

$$\Rightarrow$$
 $\log_a 8 = \log_a x^3 \Rightarrow x^3 = 8 \Rightarrow x = 2.$

Example: Solve
$$\log_5 x^2 = 3 + \frac{1}{2} \log_5 x$$
.

Solution:
$$\log_5 x^2 = 3 + \frac{1}{2} \log_5 x$$

$$\Rightarrow 2 \log_5 x - \frac{1}{2} \log_5 x = 3$$

$$\Rightarrow$$
 1.5 log 5 x = 3 \Rightarrow log 5 x = 2

$$\Rightarrow$$
 $x = 5^2 = 25.$

Changing the base of a logarithm

$$\log_a b = \frac{\log_c b}{\log_c a}$$

Example: Find $\log_4 29$.

Solution:
$$\log_4 29 = \frac{\log_{10} 29}{\log_{10} 4} = \frac{1.4624}{0.6021} = 2.43$$
.

A particular case

$$\log_a b = \frac{\log_b b}{\log_b a} = \frac{1}{\log_b a}$$
 This gives a source of exam questions.

Example: Solve
$$\log_4 x - 6 \log_x 4 = 1$$

Solution:
$$\Rightarrow \log_4 x - \frac{6}{\log_4 x} = 1 \Rightarrow (\log_4 x)^2 - \log_4 x - 6 = 0$$

$$\Rightarrow (\log_4 x - 3)(\log_4 x + 2) = 0$$

$$\Rightarrow \log_4 x = 3 \text{ or } -2$$

$$\Rightarrow$$
 $x = 4^3 \text{ or } 4^{-2}$ \Rightarrow $x = 64 \text{ or } \frac{1}{16}$.

Equations of the form $a^x = b$

Example: Solve
$$5^x = 13$$

$$\Rightarrow \log_{10} 5^x = \log_{10} 13$$

$$\Rightarrow$$
 $x \log_{10} 5 = \log_{10} 13$

$$\Rightarrow \qquad x = \frac{\log_{10} 13}{\log_{10} 5} = \frac{1.1139}{0.6990} = 1.59.$$

Differentiation 6

Increasing and decreasing functions

y is an increasing function if its gradient is positive, $\frac{dy}{dx} > 0$;

y is an increasing function if its gradient is negative, $\frac{dy}{dx} < 0$

For what values of x is $y = x^3 - x^2 - x + 7$ an increasing function. Example:

Solution:
$$y = x^3 - x^2 - x + 7$$

$$\Rightarrow \frac{dy}{dx} = 3x^2 - 2x - 1$$

For an increasing function we want values of x for which $3x^2 - 2x - 1 > 0$

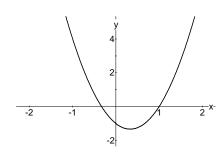
Find solutions of $3x^2 - 2x - 1 = 0$

$$\Rightarrow (3x+1)(x-1)=0$$

$$\Rightarrow$$
 $x = -1/3$ or 1

 \Rightarrow $x = \frac{-1}{3}$ or 1 so graph of $3x^2 - 2x - 1$ meets x-axis at $\frac{-1}{3}$ and 1 and is above *x*-axis for

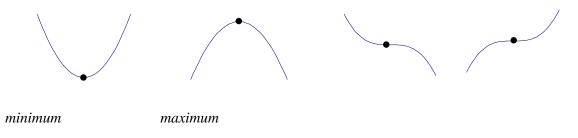
$$x < -1/3$$
 or $x > 1$



So $y = x^3 - x^2 - x + 7$ is an increasing function for $x < {}^{-1}/_3$ or x > 1.

Stationary points and local maxima and minima (turning points).

Any point where the gradient is zero is called a stationary point.



Turning points

Stationary points of inflection

Local maxima and minima are called turning points.

The gradient at a local maximum or minimum is 0.

Therefore to find max and min

firstly – differentiate and find the values of x which give gradient, $\frac{dy}{dx}$, equal to zero:

secondly – find second derivative $\frac{d^2y}{dx^2}$ and substitute value of x found above –

second derivative positive ⇒ minimum, and second derivative negative ⇒ maximum:

N.B. If $\frac{d^2y}{dx^2} = 0$, it does not help! In this case you will need to **find the gradient**

just before and just after the value of *x*. *Be careful:* you might have a stationary point of inflection

thirdly – substitute x to find the value of y and give both coordinates in your answer.

Using second derivative

Example:

Find the local maxima and minima of the curve with equation $y = x^4 + 4x^3 - 8x^2 - 7$. *Solution*:

$$y = x^4 + 4x^3 - 8x^2 - 7.$$

First find
$$\frac{dy}{dx} = 4x^3 + 12x^2 - 16x$$
.

At maxima and minima the gradient = $\frac{dy}{dx} = 0$ $\Rightarrow 4x^3 + 12x^2 - 16x = 0 \Rightarrow x^3 + 3x^2 - 4x = 0 \Rightarrow x(x^2 + 3x - 4) = 0$

18 C2 14/04/2013 SDB

$$\Rightarrow x(x+4)(x-1) = 0 \Rightarrow x = -4, 0 \text{ or } 1.$$

Second find
$$\frac{d^2y}{dx^2} = 12x^2 + 24x - 16$$

When
$$x = -4$$
, $\frac{d^2y}{dx^2} = 12 \times 16 - 24 \times 4 - 16 = 80$, positive \implies min at $x = -4$

When
$$x = 0$$
, $\frac{d^2y}{dx^2} = -16$, negative, \Rightarrow max at $x = 0$

When
$$x = 1$$
, $\frac{d^2y}{dx^2} = 12 + 24 - 16 = 20$, positive, \Rightarrow min at $x = 1$.

Third find y-values: when x = -4, 0 or $1 \implies y = -135, -7$ or -10

 \Rightarrow Maximum at (0, -7) and Minimum at (-4, -135) and (1, -10).

N.B. If $\frac{d^2y}{dx^2} = 0$, it does not help! You can have any of max, min or stationary point of inflection.

Using gradients before and after

Example: Find the stationary points of $y = 3x^4 - 8x^3 + 6x^2 + 7$.

Solution: $y = 3x^4 - 8x^3 + 6x^2 + 7$

$$\Rightarrow \frac{dy}{dx} = 12x^3 - 24x^2 + 12x = 0$$
 for stationary points

$$\Rightarrow$$
 $x(x^2 - 2x + 1) = 0$ \Rightarrow $x(x - 1)^2 = 0$ \Rightarrow $x = 0 \text{ or } 1.$

$$\frac{d^2y}{dx^2} = 36x^2 - 48x + 12$$

which is 12 (positive) when $x = 0 \implies \text{minimum at } (0, 7)$

and which is 0 when x = 1, so we must look at gradients before and after.

$$x = 0.9$$
 1 1.1

$$\frac{dy}{dx} = +0.108 \quad 0 \quad +0.132$$

 \Rightarrow stationary point of inflection at (1, 2)

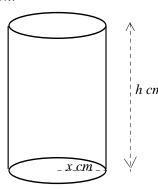
N.B. We could have *max*, *min or stationary point of inflection* when the second derivative is zero, so we **must** look at gradients before and after.

Maximum and minimum problems

Example:

A manufacturer of cans for baked beans wishes to use as little metal as possible in the manufacture of these cans. The cans must have a volume of 500 cm³: how should he design the cans?

Solution:



We need to find the radius and height needed to make cans of volume 500 cm³ using the minimum possible amount of metal.

Suppose that the radius is x cm and that the height is h cm.

The area of top and bottom together is $2 \times \pi x^2$ cm² and the area of the curved surface is $2\pi xh$ cm²

 \Rightarrow the total surface area $A = 2\pi x^2 + 2\pi xh$ cm². (I)

We have a problem here: A is a function not only of x, but also of h.

But we know that the volume is 500 cm³ and that the volume can also be written as $\pi x^2 h$ cm³

$$\Rightarrow \pi x^2 h = 500 \Rightarrow h = \frac{500}{\pi x^2}$$

and so (I) can be written $A = 2\pi x^2 + 2\pi x \times \frac{500}{\pi x^2}$

$$\Rightarrow$$
 A = $2\pi x^2 + \frac{1000}{x} = 2\pi x^2 + 1000 x^{-1}$

$$\Rightarrow \frac{dA}{dx} = 4\pi x - 1000x^{-2} = 4\pi x - \frac{1000}{x^2}.$$

For stationary values of A, the area, $\frac{dA}{dx} = 0 \implies 4\pi x = \frac{1000}{x^2}$

$$\Rightarrow$$
 $4 \pi x^3 = 1000$ \Rightarrow $x^3 = \frac{1000}{4 \pi} = 79.57747155$ \Rightarrow $x = 4.301270069$

$$\Rightarrow x = 4.30 \text{ to 3 s.f.} \qquad \Rightarrow \qquad h = \frac{500}{\pi x^2} = 8.60$$

We do not know whether this value gives a maximum or a minimum value of A or a stationary point of inflection

so we must find
$$\frac{d^2A}{dx^2} = 4\pi + 2000 x^{-3} = 4\pi + \frac{2000}{x^3}$$
.

Clearly this is positive when x = 4.30 and thus this gives a *minimum* of A

 \Rightarrow minimum area of metal is 349 cm² when the radius is 4.30 cm and the height is 8.60 cm.

7 Integration

Definite integrals

When limits of integration are given.

Example: Find
$$\int_{1}^{3} 6x^2 - 8x + 1 dx$$

Solution:
$$\int_{1}^{3} 6x^{2} - 8x + 1 dx = \left[2x^{3} - 4x^{2} + x\right]_{1}^{3}$$
 no need for $+C$ as it cancels out
$$= \left[2 \times 3^{3} - 4 \times 3^{2} + 3\right] - \left[2 \times 1^{3} - 4 \times 1^{2} + 1\right]$$
 put top limit in first
$$= \left[21\right] - \left[-1\right] = 22.$$

Area under curve

The integral is the area between the curve and the x-axis, **but** areas **above** the axis are **positive** and areas **below** the axis are **negative**.

Example: Find the area between the x-axis, x = 0, x = 2 and $y = x^2 - 4x$.

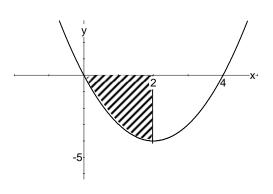
Solution:

$$\int_0^2 x^2 - 4x \, dx$$

$$= \left[\frac{x^3}{3} - 2x^2 \right]_0^2 = \left[\frac{8}{3} - 8 \right] - [0 - 0]$$

$$= \frac{-16}{3} \quad \text{which is negative since the area is below the } x - axis$$

required area is $\frac{+16}{2}$



Example: Find the area between the x-axis, x = 1, x = 4 and $y = 3x - x^2$.

Solution: First sketch the curve to see which bits are above (positive) and which bits are below (negative).

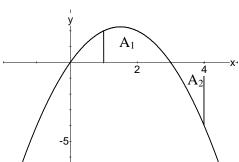
$$y = 3x - x^{2}$$

$$= x(3 - x)$$

$$\Rightarrow \text{ meets } x\text{-axis at } 0 \text{ and } 3$$

so graph is as shown.

Area A_1 , between 1 and 3, is above axis: area A_2 , between 3 and 4, is below axis so we must find these areas separately.



$$A_{1} = \int_{1}^{3} 3x - x^{2} dx$$

$$= \left[\frac{3x^{2}}{2} - \frac{x^{3}}{3} \right]_{1}^{3} = [4.5] - [1\frac{1}{6}] = 3^{1}/_{3}.$$
and
$$\int_{3}^{4} 3x - x^{2} dx = \left[\frac{3x^{2}}{2} - \frac{x^{3}}{3} \right]_{3}^{4} = [2\frac{2}{3}] - [4.5] = -1\frac{5}{6}$$

and so area A_2 (areas are positive) = $+1^5/_6$ so total area = $A_1 + A_2 = 3^1/_3 + 1^5/_6 = 5^1/_6$.

Note that
$$\int_{1}^{4} 3x - x^{2} dx \left[\frac{3x^{2}}{2} - \frac{x^{3}}{3} \right]_{1}^{4} = \left[2\frac{2}{3} \right] - \left[1\frac{1}{6} \right] = 1\frac{1}{2}$$

which is
$$A_1 - A_2 = 3^1/_3 - 1^5/_6 = 1^1/_2$$
.

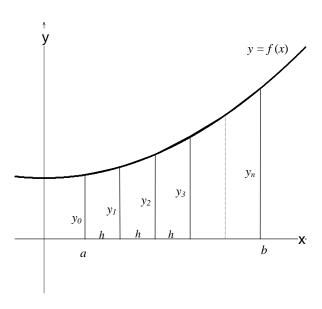
Numerical integration: the trapezium rule

Many functions can **not** be 'anti-differentiated' and the trapezium rule is a way of estimating the area under the curve.

Divide the area under y = f(x) into n strips, each of width h.

Join the top of each strip with a straight line to form a trapezium.

Then the area under the curve ≈ sum of the areas of the trapezia



$$\Rightarrow \int_{a}^{b} f(x) dx \approx \frac{1}{2} h(y_0 + y_1) + \frac{1}{2} h(y_1 + y_2) + \frac{1}{2} h(y_2 + y_3) + \dots + \frac{1}{2} h(y_{n-1} + y_n)$$

$$\Rightarrow \int_{a}^{b} f(x) dx \approx \frac{1}{2} h (y_0 + y_1 + y_1 + y_2 + y_2 + y_3 + \dots + y_{n-1} + y_n)$$

$$\Rightarrow \int_{a}^{b} f(x) dx \approx \frac{1}{2} h (y_0 + y_n + 2(y_1 + y_2 + y_3 + \dots + y_{n-1}))$$

 \Rightarrow area under curve $\approx \frac{1}{2}$ width of each strip \times ('ends' + 2 \times 'middles').

22 C2 14/04/2013 SDB

Index

C2 14/04/2013 SDB 23