

GCSE Mathematics

2019 Predicted Paper 1b (Non-Calculator) 1MA1
 Higher Tier (Mark Scheme)

1MA1 2019 Predicted papers 1b: Paper 1H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
1				2	M1 for correct intersecting arcs A1 for correct angle bisector
2			Proof	4	M1 for setting up a correct equation in x, eg. $3 x-2=x+1$

| 1MA1 2019 Predicted papers 1b: Paper 1H (Regular) mark scheme - Version 1.0 | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| Question | Working | Answer | Mark | Notes |

1MA1 2019 Predicted papers 1b: Paper 1H (Regular) mark scheme - Version 1.0					
		Working	Answer	Mark	Notes
3			9	4	M1 for method to find area of one rectangle, $\text { eg } 15 \times 8(=120) \text { or } 15 \times 11(=165)$ M1 (dep) for subtracting from/by given area, $\operatorname{eg}(138-" 120 ")(=18) \text { or " } 165 "-138(=27)$ M1 for final step from complete method shown, $\text { eg } 15-\text { " } 18 \text { " } \div 3 \text { or " } 27 " \div 3$ A1 cao OR M1 for a correct expression for the area of one rectangle, $\operatorname{eg}(8+3) \times(15-x) \text { or } 8 \times x$ M1 (dep) for a correct equation $\operatorname{eg}(8+3) \times(15-x)+8 \times x=138$ M1 for correct method to isolate x, eg $3 x=27$ A1 cao
4	(a) (b)		$\begin{aligned} & \hline 3 \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	B1 for 3 (accept ± 3, but not -3 alone) B1 for $\frac{1}{2}(=0.5)$

1MA1 2019 Predicted papers 1b: Paper 1H (Regular) mark scheme - Version 1.0					
Question		Working	Answer	Mark	Notes
	(c) (d)		$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	B1 cao M1 for using $8=2^{3}$ M1 for deriving a correct equation in m A1 cao
5		$\begin{aligned} & 240 \div 8=30 \\ & \text { Ann }=30 \times 3=90 \\ & \text { Bob }=30 \times 5=150 \\ & 90 \div 2+150 \div 10=60 \\ & \text { OR } \\ & \text { Ann }=3 / 8 \\ & \text { Bob }=5 / 8 \\ & 3 / 8 \times 1 / 2+5 / 8 \times 1 / 10 \\ & 3 / 16+5 / 80=15 / 80+5 / 80 \end{aligned}$	60/240 ($=1 / 4$)	4	M1 for $240 \div 8=30$ M1 for $30 \times 3(=90)$ or $30 \times 5(=150)$ M1 for ' 90 ' $\div 2+{ }^{\prime} 150$ ' $\div 10$ A1 cao OR M1 for $3 / 8$ or $5 / 8$ M1 for $3 / 8 \times 1 / 2+5 / 8 \times 1 / 10$ M1 for $3 / 16+5 / 80$ A1 cao
6		Gradient of the line joining the two points $=\frac{-1-1}{4--2}=\frac{-2}{6}=-\frac{1}{3}$ and the midpoint of the line is $\left(\frac{4+-2}{2}, \frac{1+-1}{2}\right)=(1,0) . \text { If }$ the perpendicular bisector	$y=3 x-3$.	5	Gradient of the line joining the two points $=\frac{-1-1}{4-2}=\frac{-2}{6}=-\frac{1}{3}$ and the midpoint of the line is $\left(\frac{4+-2}{2}, \frac{1+-1}{2}\right)=(1,0)$. If the perpendicular bisector has a gradient of 3 and passes through $(1,0)$ then substituting $x=1$ and $y=0$ gives $0=3 \times 1+c$ so $c=-3$.

1MA1 2019 Predicted papers 1b: Paper 1H (Regular) mark scheme - Version 1.0					
	Question	Working	Answer	Mark	Notes
		has a gradient of 3 and passes through $(1,0)$ then substituting $x=1$ and $y=0$ gives $0=3 \times 1+c$ so $c=-3$			The equation of the perpendicular bisector is $y=3 x-3$.
7		$\begin{aligned} & 4 x-6 y=22 \\ & 15 x+6 y=74 \\ & \hline 19 x \quad=96 \\ & 2 \times 4-3 y=11 \end{aligned}$	$x=4, y=-1$	4	M1 for a correct process to eliminate either x or y (condone one arithmetic error) A1 for either $x=4$ or $y=-1$ M1 (dep on $1^{\text {st }} \mathrm{M} 1$) for correct substitution of their found variable A1 for both $x=4$ and $y=-1$

8	N boys 2N girls $3 \mathrm{~N} / 5+2 \mathrm{~N} / 10=4 \mathrm{~N} / 5$ $4 \mathrm{~N} / 5 \div 3 \mathrm{~N}$	$4 / 15$	4	M1 for 3N/5 or 2N/10 oe M1 for 3N/5 $+2 \mathrm{~N} / 10$ oe M1 for '4N/5' $\div 3 \mathrm{~N}$
A1 for 4/15 oe				

| 11 a | $4+15 / 24+16 / 24$
 $=4+31 / 24$ | $\mathbf{5} \frac{7}{24}$ |
| :--- | :--- | :--- | :--- | :--- |
| $7 / 2 \div 14 / 5$ | | |
| $=7 / 2 \times 5 / 14$ | $\mathbf{1} \frac{1}{4}$ | M1 for $4+15 / 24+16 / 24$ oe |
| A1 cao | | |

13		72	P1	for showing the process of $30 \times 60(=1800)$ or 20×54 $(=1080)$
P1		(dep P1) for showing the complete process e.g. ("1800" - "1080") $\div 10$ concluding the answer is 72 (and not 66)		

14		500	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	recognition of 1.2 or 120% oe eg $600 \div 1.2$ oe or $x \times 1.2=600$ oe or $120 \%=600$ cao
15		$x^{3}+6 x^{2}+11 x+6$	M1 M1 A1	for method to find the product of any two linear expressions (3 correct terms) e.g. $x^{2}+x+2 x+2$ or $x^{2}+2 x+3 x+6$ or $x^{2}+x+3 x+3$ for method of multiplying out remaining products, half of which are correct (ft their first product) e.g. $x^{3}+x^{2}+2 x^{2}+3 x^{2}+2 x+3 x+6 x+6$ cao
16 (a) (b)		$y=\frac{9}{x^{2}}$ $\frac{3}{4}$	M1 A1 M1 A1	begins to work with $y=\frac{k}{x^{2}}$ oe e.g. subs of a pair of numbers into $y=\frac{k}{x^{2}}$ or states $k=9$ for $y=\frac{9}{x^{2}}$ Accept $y=9 x^{-2}$ $\mathrm{ft}\left(\right.$ dep on previous M1) subs $y=16$ into proportional formula of the form $y=\frac{k}{x^{2}}$ oe oe

$18(\mathrm{~b})$	$\mathrm{g}^{-1}(x)=\frac{x}{3}+4$	M 1	This mark is given for a process to find an expression for $\mathrm{g}^{-1}(x)$
$3+4=7$	P 1	This mark is given for the correct answer only	
19		This mark is given for a process to substitute to find the value of b	

Midpoint x-coordinate is 1.5 When $x=1.5, y$-coordinate is -6.25 Turning point is $(1.5,-6.25)$		A1	This mark is given for the correct answer only
20	Let x be the number of orange marbles in the bag The probability of taking two orange marbles is $\frac{x}{2 x+3} \times \frac{x-1}{2 x+2}$ The probability of taking two purple marbles is $\frac{x+3}{2 x+3} \times \frac{x+2}{2 x+2}$	P1	This mark is given for a process to find the probability of taking two orange marbles or the probability of taking two purple marbles
	The probability of taking two marbles of the same colour is $\begin{aligned} & \frac{x}{2 x+3} \times \frac{x-1}{2 x+2}+\frac{x+3}{2 x+3} \times \frac{x+2}{2 x+2}= \\ & \frac{43}{88} \end{aligned}$	P1	This mark is given for forming an equation for the probability Roxanne takes two marbles of the same colour
	$\begin{aligned} & 88(x(x-1)+(x+3)(x+2)) \\ & =43(2 x+3)(2 x+2) \end{aligned}$	P1	This mark is given for a process to eliminate fractions from the algebraic expression
	$88\left(2 x^{2}+4 x+6\right)=43\left(4 x^{2}+10 x+6\right)$	P1	This mark is given for reducing the expression to a quadratic equation

	$\begin{aligned} & 176 x^{2}+352 x+528=172 x^{2}+430 x+ \\ & 258 \\ & 4 x^{2}-78 x+270=0 \end{aligned}$		
	$(2 x-30)(2 x-9)=0$	P1	This mark is given for finding a method to solve the quadratic equation
	15	A1	This mark is given for the correct answer only
21		$3 x$	M1 Factorising numerator and denominator of first fraction $\frac{3(x+2)}{(x-5)(x+2)} \quad\left(=\frac{3}{(x-5)}\right)$ M1 Factorising denominator of second fraction $\frac{x+5}{x(x+5)(x-5)} \quad\left(=\frac{1}{x(x-5)}\right)$ M1 Multiplication by reciprocal $\frac{3(x+2)}{(x-5)(x+2)} \times \frac{x(x+5)(x-5)}{(x+5)}$ A1 Completing algebra to reach $3 x$
22		$x<-3, x>6$	M1 \quad Rearrange to $x^{2}-3 x-18>0$
			M1 Correct method to solve $x^{2}-3 x-18=0$
			M1 ${ }^{\text {Establish critical values }-3 \text { and } 6}$
			A1 $x<-3, x>6$
23		60	P1 process to start problem eg draw diagram and find gradient of OA (=3)

				P1	process to find equation of tangent with $m=-1 / 3$,
				P1	process to find x-axis intercept of tangent
				P1	process to find area of triangle
				A1	cao

