

GCSE Mathematics

2019 Predicted Paper 1b (Non-Calculator) 1MA1 Higher Tier (Mark Scheme)

	1MA1 2019 Predicted papers 1b: Paper 1H (Regular) mark scheme – Version 1.0							
Question		Working	Answer	Mark	Notes			
1				2	M1 for correct intersecting arcs			
					A1 for correct angle bisector			
2			Proof	4	M1 for setting up a correct equation in <i>x</i> ,			
					eg. $3x - 2 = x + 1$			

	1MA1 2019 Pr	egular) mark scheme – Version 1.0		
Question	Working	Answer	Mark	Notes
				M1 (dep) for a fully correct method to solve their equation or for $x = 1.5$
				M1 (dep) for $("1.5" + 1) \times 4$ or $(3 \times "1.5" - 2) \times 4$
				or $(3 \times "1.5" - 2) \times 2 + ("1.5" + 1) \times 2$
				C1 (dep on M3) for completing the proof resulting in a perimeter of 10
				OR
				M1 for setting up a correct equation in x ,
				eg. $2(3x-2) + 2(x+1) = 10$
				M1 (dep) for a fully correct method to solve their equation or for $x = 1.5$
				M1 (dep) for "1.5" + 1 and $3 \times$ "1.5" - 2
				C1 (dep on M3) for completing the proof resulting in a justification that the shape is a square

1MA1 2019 Predicted papers 1b: Paper 1H (Regular) mark scheme – Version 1.0							
Que	stion	Working	Answer	Mark	Notes		
3			9	4	M1 for method to find area of one rectangle,		
					eg 15 × 8 (=120) or 15 × 11 (=165)		
					M1 (dep) for subtracting from/by given area,		
					eg (138 – "120") (=18) or "165" – 138 (=27)		
					M1 for final step from complete method shown,		
					eg 15 – "18"÷ 3 or "27" ÷ 3		
					A1 cao		
					OR		
					M1 for a correct expression for the area of one rectangle,		
					eg $(8+3) \times (15-x)$ or $8 \times x$		
					M1 (dep) for a correct equation		
					eg $(8+3) \times (15-x) + 8 \times x = 138$		
					M1 for correct method to isolate <i>x</i> , eg $3x = 27$		
					A1 cao		
4	(a)		3	1	B1 for 3 (accept ± 3 , but not -3 alone)		
	(b)		$\frac{1}{2}$	1	B1 for $\frac{1}{2}$ (= 0.5)		
			2				

	1MA1 2019 Predicted papers 1b: Paper 1H (Regular) mark scheme – Version 1.0							
Que	stion	Working	Answer	Mark	Notes			
	(c)		4	1	B1 cao			
	(d)		6	3	M1 for using $8 = 2^3$			
					M1 for deriving a correct equation in m			
					A1 cao			
5		240 ÷ 8 = 30	60/240 (= ¼)	4	M1 for 240 ÷ 8 = 30			
		Ann = 30 x 3 = 90			M1 for 30 x 3 (= 90) or 30 x 5 (= 150)			
		Bob = 30 x 5 = 150			M1 for '90' ÷ 2 + '150' ÷ 10			
		90 ÷ 2 + 150 ÷ 10 = 60			A1 cao			
		OR			OR			
		Ann = 3/8			M1 for 3/8 or 5/8			
		Bob = 5/8			M1 for 3/8 x ½ + 5/8 x 1/10			
		3/8 x ½ + 5/8 x 1/10			M1 for 3/16 + 5/80			
		3/16 + 5/80 = 15/80 + 5/80			A1 cao			
6		Gradient of the line joining the two points -1-1, -2 , 1	y=3x-3.	5	Gradient of the line joining the two points $=\frac{-1-1}{4-2}=\frac{-2}{6}=-\frac{1}{3}$			
		$=\frac{-1-1}{4-2}=\frac{-2}{6}=-\frac{1}{3}$ and the			and the midpoint of the line is $\left(\frac{4+-2}{2}, \frac{1+-1}{2}\right) = (1, 0)$. If the			
		midpoint of the line is $(4+-2, 1+-1)$			perpendicular bisector has a gradient of 3 and passes			
		$\left\lfloor \left(\frac{1}{2}, \frac{1}{2} \right) \right\rfloor = (1, 0)$. If			through (1, 0) then substituting $x = 1$ and $y = 0$ gives			
		the perpendicular bisector			$0 - 3 \times 1 + 0.50 \ c = -3.$			

@cchristian 1MA1 predicted paper 1H mark scheme:

	1MA1 2019 Predicted papers 1b: Paper 1H (Regular) mark scheme – Version 1.0							
Question	Working	Answer	Mark	Notes				
	has a gradient of 3 and passes through (1, 0) then substituting $x = 1$ and $y = 0$ gives $0 = 3 \times 1 + c$ so $c = -3$.			The equation of the perpendicular bisector is $y = 3x - 3$.				
7	4x - 6y = 22 15x + 6y = 74 19x = 96 $2 \ge 4 - 3y = 11$	<i>x</i> = 4, <i>y</i> = -1	4	M1 for a correct process to eliminate either x or y (condone one arithmetic error) A1 for either $x = 4$ or $y = -1$ M1 (dep on 1 st M1) for correct substitution of their found variable A1 for both $x = 4$ and $y = -1$				

8	N boys 2N girls 3N/5 + 2N/10 = 4N/5 $4N/5 \div 3N$	4/15	4	M1 for $3N/5$ or $2N/10$ oe M1 for $3N/5 + 2N/10$ oe M1 for $4N/5' \div 3N$ A1 for $4/15$ oe

9(a)		2	1	B1 cao
9(b)		Negative	1	B1 cao
				B2 for answer in the range 2.6 to 2.9
9(c)		2.6 to 2.9	2	[B1 for a line of best fit drawn if answer outside this range]
10(a)	Tria	angle at (0, -2),	2	B2 for a correct rotation
	(3, -2), (0, -4)		[B1 for correct orientation or correct rotation 90°
				anticlockwise
				B1 for enlargement
10(b)	Enlarger	ment, scale factor 3	3	B1 for scale factor of 3
		about (0, 0)		B1 for centre (0, 0) oe

11a 11b	4 + 15/24 + 16/24 = 4 + 31/24	5 <mark>7 24</mark> □		M1 for 4 + 15/24 + 16/24 oe A1 cao
	7/2 ÷ 14/5 = 7/2 x 5/14	$1\frac{1}{4}$		M1 for 7/2 or 14/5 seen A1 cao
12(a)	x= 0.292929 100 <i>x</i> = 29.292929 99 <i>x</i> = 29	29/99	2	M1 for 0.292929 A1 for 29/99 oe
12(b)	y = 0.0x0x0x 100 $y = x.0x0x0x$ 99 $y = x$ so $y = x/9$	Proof	2	M1 for for sight of two recurring decimals whose difference is a rational number A1 for completion of proof

13	72	P1	for showing the process of 30×60 (=1800) or 20×54 (=1080)
		P1	(dep P1) for showing the complete process e.g. ("1800" – "1080") \div 10
		A1	concluding the answer is 72 (and not 66)

14	500	M1	recognition of 1.2 or 120% oe eg $600 \div 1.2$ oe or $x \times 1.2 = 600$ oe or $120\% = 600$
		A1	cao
15	$x^3 + 6x^2 + 11x + 6$	M1	for method to find the product of any two linear expressions (3 correct terms)
			e.g. $x^2+x+2x+2$ or $x^2+2x+3x+6$ or $x^2+x+3x+3$
		M1	for method of multiplying out remaining products, half of which are correct (ft
			their first product) e.g. $x^3+x^2+2x^2+3x^2+2x+3x+6x+6$
		A1	cao
16 (a)	$y = \frac{9}{v^2}$	M1	begins to work with $y = \frac{k}{r^2}$ or e.g. subs of a pair of numbers into $y = \frac{k}{r^2}$ or states
	X		k=9
		A1	for $y = \frac{9}{x^2}$ Accept $y = 9x^{-2}$
(b)	3	M1	ft (dep on previous M1) subs $y = 16$ into proportional formula of the form $y = \frac{k}{r^2}$
	$\overline{4}$		oe
		A1	oe

17(a)		Stars: 4/9 x 3/8 = 12/72	1⁄4	3	M1 for 4/9 x 3/8 (= 12/72) or 3/9 x 2/8 (= 6/72)	
		Hearts: 3/9 x 2/8 = 6/72			M1 for '12/72' + '6/72'	
		12/72 + 6/72 = 18/72			A1 for ¼ oe	
17(b)		1440 x 12/72 x 1.50 = 360	840	4	M1 for 1440 x 12/72 or 1440 x 6/72	
		1440 x 6/72 x 2 = 240			M1 for 1440 x 12/72 x 1.50 (= 360) or	
		1440 - 360 - 240			1440 x 6/72 x 2 (= 240)	
					M1 for 1440 – '360' – '240'	
					A1 cao	
10()		x ² 4	<u></u>			
18(a)	3((x-2))) ² - 4)	CI	This mark is given for a first step to find $gf(x)$		
	$= 3(x^2 - 4x + 4 - 4) $ C1		C1	This mark is given for a complete chain of reasoning		
	$=3x^2-12x$					
	=3x(x-4)					

18(b)	$g^{-1}(x) = \frac{x}{3} + 4$	M1	This mark is given for a process to find an expression for $g^{-1}(x)$
	3 + 4 = 7	A1	This mark is given for the correct answer only
19		P1	This mark is given for a process to substitute to find the value of b
When x $-4 = 0^2$	x = 0 and y = -4, + $(a \times 0) + b$		
b = -4			
When $a = -3$	x = 4 and y = 0, - $4a - 4$	P1	This mark is given for a process to substitute to find the value of <i>a</i>
$y = x^2 - 3x - 4 = (x + 1)(x - 4)$ Thus the other intercept is at (-1, 0) P1			This mark is given for a complete process to find the turning point

Midpoint <i>x</i> -coordinate is 1.5		A1	This mark is given for the correct answer only
When	x = 1.5, y-coordinate is -6.25		
Turnir	g point is (1.5, -6.25)		
20	Let x be the number of orange marbles in the bag The probability of taking two orange marbles is $\frac{x}{2x+3} \times \frac{x-1}{2x+2}$ The probability of taking two purple marbles is	P1	This mark is given for a process to find the probability of taking two orange marbles or the probability of taking two purple marbles
	$\frac{x+3}{2x+3} \times \frac{x+2}{2x+2}$		
	The probability of taking two marbles of the same colour is $\frac{x}{2x+3} \times \frac{x-1}{2x+2} + \frac{x+3}{2x+3} \times \frac{x+2}{2x+2} = \frac{43}{88}$	Ρ1	This mark is given for forming an equation for the probability Roxanne takes two marbles of the same colour
	88(x(x-1) + (x+3)(x+2)) = 43(2x + 3)(2x + 2)	P1	This mark is given for a process to eliminate fractions from the algebraic expression
$88(2x^2 + 4x + 6) = 43(4x^2 + 10x + 6)$		P1	This mark is given for reducing the expression to a quadratic equation

@cchristian 1MA1 predicted paper 1H mark scheme:

	$ \begin{array}{r} 176x\\ 258\\ 4x^2- \end{array} $	$x^{2} + 352x + 528 = 172x^{2} + 430x + 678x + 270 = 0$					
	(2 <i>x</i> –	(-30)(2x-9) = 0	P1	This n	nis mark is given for finding a method to solve the quadratic equation		
	15		A1	This mark is given for the correct answer only			
21			3 <i>x</i>	M1	Factorising numerator and denominator of first fraction $\frac{3(x+2)}{(x-5)(x+2)}$ $(=\frac{3}{(x-5)})$		
				M1	Factorising denominator of second fraction		
					$\frac{x+5}{x(x+5)(x-5)} (=\frac{1}{x(x-5)})$		
				M1	Multiplication by reciprocal		
					$\frac{3(x+2)}{(x-5)(x+2)} \times \ \frac{x(x+5)(x-5)}{(x+5)}$		
				A1	Completing algebra to reach $3x$		
22			x < -3, x > 6	M1	Rearrange to $x^2 - 3x - 18 > 0$		
				M1	Correct method to solve $x^2 - 3x - 18 = 0$		
				M1	Establish critical values -3 and 6		
				A1	x < -3, x > 6		
23			60	P1	process to start problem eg draw diagram and find gradient of OA (= 3)		

		P1	process to find equation of tangent with
			m = -1/3'
		P1	process to find x-axis intercept of tangent
		P1	process to find area of triangle
		A1	cao

24	(a)	$\sqrt{9\times5}$ and $\sqrt{4\times5}$			2	M1	or for 45 = 3 × 3 × 5 and	
							20 = 2 × 2 × 5	
			$5\sqrt{5}$ show	n		A1	dep on M1 cao with sight of $3\sqrt{5}+2\sqrt{5}$ but we must	
							see where these come from	
	(b)	$\frac{2}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$ or $\frac{2(\sqrt{3}+1)}{3-1}$ or $\frac{2\sqrt{3}}{2}$	+2		2	M1	Rationalise denominator – award for seeing multiplication by $\frac{\sqrt{3}+1}{\sqrt{5}}$ or $\frac{-\sqrt{3}-1}{\sqrt{5}}$	
							$\sqrt{3}+1$ $-\sqrt{3}-1$	
			$1 + \sqrt{3}$			A1	dep on M1	
	(c)	$(x+3\sqrt{2})^2 - (3\sqrt{2})^2 - 1$			2	M1	or $(x+3\sqrt{2})^2 - 18 - 1$ or for	
							$a = 3\sqrt{2}$ or $b = -19$	
			$(x+3\sqrt{2})^2$	-19		A1		
	20		Proof	B1	fo	for using any correct trig value for 30°, e.g. sin 30 = 0.5, cos 30 = $\frac{\sqrt{3}}{2}$ or tan 30 =		
					$\left \frac{1}{\sqrt{1-1}} \right $	$\frac{1}{\sqrt{3}}$		
				M 1	fo	for hypotenuse of small triangle = $2y$ or hypotenuse of large triangle = $2n$		
				A1	fo	for method to find the hypotenuse of middle triangle, e.g. $\sqrt{(2n)^2 - n^2} = \sqrt{3}n$		
				A1	fo: res	for a correct equation linking y and n and correct working leading to the given result		