Predicted Paper 1MA1: 1F Answer

1		916(30	5	2	$\begin{aligned} & \text { M1 } 30-"(16+9) " \text { or " } 30-16 "-9 \text { or } \\ & " 30-9 "-16 \end{aligned}$ A1 cao
2			$-5,-3,4,6,9$	1	B1 cao
	b		5.3	1	B1 cao
	c		23/100	1	B1 oe
	d		56\%	1	B1 cao
3.			7.84	B1	cao
4.			25	B1	cao
5		$\frac{2}{5}$	B1	cao	
6		Explanation	C1	$\begin{aligned} & \text { compares Heron and } \\ & \text { CIS } \\ & \text { eg } 2 \times \text { CIS is } 236(> \\ & \text { Heron } 230) \\ & \text { or } 1 / 2 \text { Heron is } 115 \\ & (<\text { CIS 118) } \end{aligned}$	The explanation does not need to include details given in the question (given in brackets); comparison can be implied

7	(a)	11	B1	cao	
	(b)	8	B1	cao	
	(c)	$\frac{1}{10}$	B1	oe	Accept 0.1 or 10% as equivalent
8	(a)	$(1,3)$	B1	cao	
	(b)	$(-1,-2)$ plotted	B1	Point plotted correctly	Accept a point plotted near to $(-1,-2)$ if the intention is clear.
	(c)	12	M1	for method to find area of triangle, eg $\frac{6 \times 4}{2}(=12)$ or $\frac{4 \times 4}{2}+\frac{2 \times 4}{2}(=8+$ 4) oe or $8+4 \times \frac{1}{2}+$ $" \frac{1}{3} "+" \frac{2}{3} "+" \frac{1}{3} "+" \frac{2}{3} "$	The full method must be shown. If a method of counting squares is shown it is not sufficient just to show the intention: the relevant parts being added must also be shown.
9	(a)	$\begin{aligned} & \frac{1}{2}+\frac{1}{6}=\frac{4}{6} \\ & 1-\frac{4}{6} \end{aligned}$	$\frac{1}{3}$	3	M1 for correctly writing both fractions to a common denominator A1 for $\frac{2}{3}$ oe

	(b)	$\begin{aligned} & 12 \frac{1}{2} \div \frac{5}{8} \\ & \frac{25}{2} \times \frac{8}{5} \end{aligned}$	20	3	B1 ft for $1-\frac{" 2 "}{3}$ M1 for $12 \frac{1}{2}$ correctly written as an improper fraction M1 (indep) for $\times \frac{8}{5}$ A1 for 20 oe
	(i) (ii) (iii)		$\begin{aligned} & 16 \mathrm{~cm}^{2} \\ & 8 \mathrm{~cm}^{2} \\ & 16 \mathrm{~cm}^{2} \end{aligned}$	4	B1 cao M1 for $\frac{4 \times 4}{2}$ or " 16 " $\div 2$ A1 ft for 8 or " $(\mathrm{i}) " \div 2$ B1 ft for 16 or "(i)" or "(ii)" $\times 2$
11	(a)(i		$a+3 b$	2	B2 for $a+3 b$ oe (B1 for a or 1a or 3b)
	(ii)		$2 x^{2}+x$	2	B2 for $2 x^{2}+x$ oe (B1 for $2 x^{2}$ or x or $1 x$)
	(b)(i)		$8 x-12$	1	B1 oe
	(ii)		$p q-p^{3}$	1	B1 oe accept $p \times q-p \times p^{2}$ or better

		A1	ft (dep M1) for correct placement of decimal point
17	$m^{2}+10 m+21$	M1 A1	for at least 3 terms out of a maximum of 4 correct from expansion
18	152	M1 M1 A1	Start to method $A B D=38^{\circ}$ and $B A D$ or $D B C$ or $D C B=38^{\circ}$ $A D B$ or $B D C=180-2 \times 38(=104)$ for 152 with working
19	Number of restaurants $=30 \div 3 \times 8=$ 80	P1	This mark is given for a process to find the number of restaurants in the city
	Number of shops $=80 \div 2 \times 7$	P1	This mark is given for a process to find the number of shops in the city
	280	A1	This mark is given for the correct answer only
20	$\frac{6 \times 1000}{250}=24$	P1	This mark is given for a process to find out the number of bags of sweets sold
	$20 \times 0.75=15$	P1	This mark is given for a process to find the amount of money made from selling the bags of sweets

	$\frac{(15-12)}{10} \times 100$	P1	This mark is given for a process to find percentage profit from selling the sweets
	30	A1	This mark is given for the correct answer only

23 (a)		1080 assumption and explanation		P1 A1 $\mathrm{C} 1$	for complete process cao statement eg sample it is not this could ch should buy	of of	so if Bill	
24	(a)	NA3c	C	$2 \frac{4-9}{12}=1 \frac{16-9}{12}$		$1 \frac{7}{12}$	3	M1 for using 12 as denominator M1 for decomposing 2 wholes A1 cao
25	(a)(i)	NA3a	C	$72=2 \times 2 \times 2 \times 3 \times 3 \text { or } 2^{3} 3^{2}$$96=2 \times 2 \times 2 \times 2 \times 2 \times 3 \text { or } 2^{5} 3$			4	M1 for dividing through by 2 then 3 A1 cao M1 for dividing through by 2 then 3 A1 cao
	(ii)	NA2a	C	$2 \times 2 \times 2 \times 3=$		24	2	M1 for selecting 2 and 3 as common prime factors A1 cao

	(b)	NA3c	A	$x=0.454545$ $100 x=45.454545$ Subtract $99 x=45$ $x=\frac{45}{99}$			
				$\frac{5}{11}$	3	M1 for 0.454545×100	
M1 for $99 x=45$							
A1 cao							

26	(i)	NA5d	C		m^{-3}	2	B1 cao
	(ii)	NA5d	C		h^{4}		B1 cao
	(b)(i)	NA5b	B	$2 x^{2}-x-6$		B1 for $2 x^{2}-6$	
	(ii)	NA5b	B	$(3 x-2)(3 x-2)$ $9 x^{2}-12 x+4$		$x=5$	
	(c)	NA5k	B	$(x-5)(x+2)$	$x=-2$	B1 for $9 x^{2}+4$	

27	$\begin{aligned} 15 x+3 y & =63 \\ x-3 y & =9 \end{aligned}$	M1	This mark is given for a method to eliminate one variable
	$\begin{aligned} 16 x & =72 \\ x & =4.5 \end{aligned}$	M1	This mark is given for a method to find the value of one variable
	$\begin{aligned} & 4.5-3 y=9 \\ & y=-1.5 \end{aligned}$	A1	This mark is given for both correct solutions
28	$\pi \times 10^{2} \div 2=50 \pi$	M1	This mark is given for a method to find the area of the semicircle
	$\pi \times 20^{2} \div 4=100 \pi$	M1	This mark is given for a method to find the area of the quarter circle
	$\begin{aligned} & 100 \pi-50 \pi=50 \pi \\ & 20 \times 20=400 \end{aligned}$	M1	This mark is given for a method to find the shaded area and the area of the square
	$\frac{50 \pi}{400}=\frac{\pi}{8}$	A1	This mark is given for a correct conclusion supported by correct working.

